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ABSTRACT 

 

Remote Sensing of Phragmites australis with the EO-1 Hyperion Sensor 

Bruce W. Pengra 

November 9, 2005 

 

Phragmites australis is an invasive wetland plant that is recognized as a cause and 

a symptom of wetland degradation.  This study evaluates the utility of Hyperion 

hyperspectral remote sensing imagery and common image analysis software for detecting 

large monodominant stands of Phragmites in coastal wetlands.  Two approaches to 

hyperspectral image classification—unsupervised classification and target detection—are 

evaluated.  The target detection approach achieved 68.3 percent overall accuracy with 

41.2 percent user’s accuracy.  These results suggests that with further refinement of 

analysis techniques and the evolution of sensor technology, Hyperion and other space 

platform hyperspectral sensors may provide wetland scientists and resource managers 

with an efficient and effective monitoring tool. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

1-1: Introduction 

 Phragmites australis (hereafter Phragmites) is a species of wetland grass native to 

every continent but Antarctica (Blossey et al., 2002).  An invasive Phragmites genotype, 

thought to have arrived with European settlement, has expanded its range across North 

America over the last 150 years—particularly the last few decades (Saltonstall, 2002).  

Domination of wetlands by large dense stands of Phragmites alters the natural 

functioning of these ecosystems (Marks et al., 1994; Benoit and Askins, 1999; Meyerson 

et al., 2000) and is considered an indicator of wetland disturbance and decline 

(Saltonstall, 2002; Marks et al., 1994).   

 Airborne remote sensing of Phragmites has been pursued as a means locating and 

studying these invasions (Lopez et al., 2004).   In fact, many studies using airborne 

sensors have had good success in identifying or mapping invasive species (Williams and 

Hunt, 2002; Underwood et al., 2003; Bachman et al., 2002).  However, the cost and 

limited spatial and temporal coverage of airborne remote sensors is a barrier to their use 

for ongoing study and wetland management.  For that reason, this study evaluates the 

facility of Hyperion, a hyperspectral sensor aboard the EO-1 satellite, for distinguishing 

Phragmites from its wetland surroundings.  

Phragmites is not the only species invading the Great Lakes coastal wetlands.  

Lythrum salicaria, Typha x glauca, Phalaris arundinacea, and Myriophyllum spicatum 

are among the other invasive wetland species that are currently of great concern 

(Galatowitsch et al., 1999).  In addition, Lythrum, Typha and Phalaris also met the 
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requirement of occurring in large monodominant stands that could potentially be resolved 

with the 30 m resolution of Hyperion.  However, the fact that other hyperspectral remote 

sensing studies have had some success in species level identification of Phragmites 

(Bachmann, 2002; Lopez et al., 2004) and thus provided a methodological starting point, 

made Phragmites a logical choice of subject for this investigation. 

1-2: The Problem of Invasive Species 

Geographical barriers and biological limitations have historically maintained the 

rate of plant species dispersal.  This state of relative equilibrium has been tied to the rates 

of climate change, evolution, occurrence of major disturbance, and even plate tectonics.  

It is in the context of this geological rate of change that the planet’s species and 

ecosystems have evolved.   

These historical rates of dispersion and disturbance have been accelerated by 

orders of magnitude by humans (Vitousek et al., 1997).  Species which had been largely 

isolated for millions of years are now dispersed throughout the biosphere (Mooney and 

Cleland, 2001).  Many species were deliberately transported for human use.  Many more 

were inadvertently transported with livestock, humans, agricultural products, ships’ 

ballast and so on. 

Whether deliberately or accidentally introduced, many of these plants have 

become successful colonizers of their new environments.  In many continental 

environments 20 percent or more of the plant species are non-native (Vitousek et al., 

1997).  On many islands, invasive species account for over 50 percent of the total species 

(Vitousek et al., 1997).  In the United States it is estimated that approximately 5,000 non-
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native plant species have become established in the natural environment compared to 

17,000 native plant species (Pimentel et al., 2000).  In U.S. National Parks and nature 

reserves, areas assumed by many to be pristine, 5 percent to 25 percent of vascular plants 

are non-native species (Vitousek et al., 1996).  Many of these invasive species become 

dominant in the environments they colonize.  In most cases, once established, these 

invaders are practically impossible to eradicate (Shigesada and Kawasaki, 1997).  

There are many reasons to be concerned about the rapid and increasing rate of 

non-native species introductions.  One of the most compelling reasons is that this 

unprecedented rate of introduction constitutes an experiment with our environment which 

we have little prospect of reversing (Mooney and Hobbs, 2000).  Furthermore, the 

complexity of the interactions between invasive species and the environments that they 

colonize makes prediction of probable invaders and probable environmental impacts 

extremely difficult (Schwartz et al., 1996).  It seems almost certain the rate of change in 

the global ecosystem will exceed the pace at which we advance our understanding of that 

change. 

More concretely, evidence is accumulating that ties invasive species to increased 

extinction and loss of biodiversity (Schwartz et al., 1996; Pimentel et al., 2000; Pimm et 

al., 1995; Novacek and Cleland, 2001).  In an analysis of the factors responsible for the 

current global extinction event, Wilcove and others (1998) said that, of the plants at risk 

of extinction in the United States, 57 percent were at risk in part due to pressure from 

invasive species.  The only factor that Wilcove’s study ranked higher was “habitat 

degradation/loss”—relevant for 81 percent of plants at risk (Wilcove et al., 1998).  Pimm 
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suggests that the number of extinctions attributed to invasive species may be 

underestimated, pointing out that the predation, competition, disease, and habitat 

modification, most frequently blamed for extinctions in biodiversity hotspots, are often 

caused by introduced species (Pimm et al., 1995).   

Within these areas of invasion non-native species can dramatically reduce plant 

species diversity and in turn reduce habitat and species diversity of native fauna as well 

(Vitousek et al., 1996).  Zedler and Kercher (2004) propose that wetlands are particularly 

susceptible to invasion due to their landscape position which subjects them to increased 

nutrients, moisture, and disturbance.      

1-3: Phragmites australis in North America 

Phragmites (common reed) is a widespread perennial wetland grass species.  Its 

name is derived from the Greek word for fence due to the narrow fencelike stands that it 

forms along streams and coastlines (Marks et al., 1994).  Evidence of its pre-settlement 

presence in North America suggests that is was somewhat more regional and much less 

common than it is now (Chambers et al., 1999; Lynch and Saltonstall, 2002).   

Since European settlement Phragmites has increased in distribution and relative 

abundance in wetlands in northeastern states and to a lesser extent throughout the eastern 

half of North America and the Gulf Coast.  This pattern has been documented in several 

locations including the Great Lakes Basin since about 1960 (Chambers et al., 1999; 

Galatowitsch et al., 1999).    
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Figure 1: The invasive Phragmites haplotype or genotype (right) has dramatically increased in range 
in the last 100 years.  (from Saltonstall, 2002) 
 

The expansion of Phragmites’ range and abundance in the last several decades 

(figure 1) has led to speculation that a non-native variant of Phragmites may have been 

introduced into the North American environment following European settlement (Marks 

et al., 1994).  This was confirmed by DNA analysis in 2002 (Saltonstall, 2002).  This 

same study suggests that in the areas of invasion the native genotype has been displaced 

by the more aggressive invasive one. 

Some of the expanded range and abundance of Phragmites may be explained by 

this non-native genotype, nevertheless there is good reason to believe that environmental 

factors play a significant role as well.  Seed propagation by Phragmites and other 
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opportunistic invaders is favored by unvegetated, moist soil (Chambers et al., 1999; 

Ailstock et al. 2001; Galatowitsch et al., 1999; Havens et al., 1997).  Human population 

expansion in the 1800s was accompanied by the agricultural conversion of many of the 

naturally occurring wetlands.  This resulted in massive areas of substrate disturbance for 

ditching, installation of drainage tile, road building and farming (Dahl and Allord, 1997).  

Natural means of seed dispersal were aided by the intense traffic in people, livestock, and 

goods, increasing the probability that the opportunity of open, wet soil would be 

exploited.  The fact that non-native species correlate with road density (Zedler and 

Kercher, 2004) is at least consistent with the theory that anthropogenic disturbance has 

contributed to the spread of Phragmites.  Many of these wetlands were forested prior to 

agricultural conversion (Dahl and Allord, 1997).  Clearing of these forests provided 

further environmental disturbance which again may have favored Phragmites. 

Phragmites tends to grow at or above the mean water level (Ailstock et al., 2001).  

It is classified as a facultative wetland species and can occasionally be found in upland 

areas (Reed, 1988).  Reduced tidal action, lowered water table and decreased salinity may 

favor Phragmites within salt marsh settings (Marks et al., 1994).  While Phragmites 

favors a landscape position that is higher relative to the water table than many wetland 

species, it is relatively tolerant of hydrological variability and can survive conditions that 

many competitors cannot (Marks et al., 1994). 
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Figure 2: Dense monodominant stands of Phragmites are common in the Atlantic Northeast; this one 
is on the west shore of Green Bay. 
 
1-4: Phragmites impact on North American Wetlands 

Large, nearly monospecific clonal stands of Phragmites are a common occurrence 

in tidal marshes of the Atlantic coast (Chambers et al., 1999).  Phragmites population is 

increasing in the Midwest (Blossey et al., 2002) with many reports of dramatically 

increasing populations across the Great Lakes Basin (Marks et al., 1994; Galatowitsch et 

al., 1999; Wilcox et al., 2003).  

Native Phragmites can exist in stable relationship within wetland plant 

communities.  However, when Phragmites stands are aggressively expanding and 

displacing other native species (figure 2) they are considered a problem (Marks et al., 



 

8

1994).  The primary concern relative to Phragmites invasion is the loss of species 

richness and consequent potential for extinction and loss of biodiversity (Havens et al., 

1997, Chambers et al., 1999).  

Although seed propagation may be important for colonization of new areas, 

(Blossey et al., 2002) in most cases once Phragmites is established in a wetland it 

propagates vegetatively (Chambers et al., 1999).  Established plants form buds that grow 

into horizontal rhizomes during the summer.  These rhizomes can extend up to 10 m from 

the plant of origin, terminating with an upward apex (Marks et al., 1994).  The following 

spring this apex forms a new ramet which can again send out horizontal rhizomes.  These 

clonal stands are typically monodominant (Marks et al., 1994) with culms growing as tall 

as 4 m. (Haslam, 1969) and very high stem density and above ground biomass (Meyerson 

et al., 2000).   

It is broadly accepted that Phragmites invasion reduces the plant species richness 

of an area (Meyerson et al., 2000; Chambers et al., 1999; Amsberry et al., 2000; Blossey 

et al., 2002; Ailstock et al., 2001; Zedler and Kercher, 2004).  This decrease in species 

richness is greater in more diverse freshwater marshes, such as the wetlands in the Great 

Lakes Basin, than it is in less diverse brackish systems (Meyerson et al., 2000).  It is also 

suspected that reduced plant diversity increases susceptibility to invasion, possibly 

creating a positive feedback to wetland decline (Zedler and Kercher, 2004). 

The impact of this loss of plant diversity on fauna seems to be variable, 

(Chambers et al., 1999) favoring some species and excluding others (Meyerson et al., 

2000; Marks et al., 1994).  Ailstock and co-authors (2001) report that the diversity of 
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macroinvertebrates is not affected by the displacement of native species and loss of plant 

species diversity.  For migratory waterfowl, however, there is a loss of resting, feeding 

and breeding habitat (Chambers et al., 1999).  Species of large wading birds are excluded, 

bird species diversity declines and marsh specialists lose out to generalist species (Benoit 

and Askins, 1999; Chambers et al., 1999). 

1-5: The Need for Better Data 

In spite of rapid increase in Phragmites abundance and expansion of its range, 

quantitative data as to the extent and rate of Phragmites spread are fragmented and 

inadequate, often based on anecdotal evidence (Ailstock et al., 2001; Chambers et al., 

1999; Blossey, 1999).  The call for more research, especially research that will yield 

quantitative data, is almost universal in the literature of invasive species, including 

Phragmites (Marks et al., 1994; Blossey, 1999; Meyerson et al., 2000; Ailstock et al., 

2001).  The appropriate scale, uniformity, and timeliness required of these data are all but 

impossible to acquire with only field assessment and monitoring (Heywood, 1995).   

1-6: Remote Sensing as a Source of Species Level Data 

With the launch of Landsat in the early 1970s, remote sensing began to provide 

synoptic data for ecological studies on a broad scale.  In some cases, studies of individual 

species have been possible with these data.  Generally, however, inadequate spatial and 

spectral resolution has limited the utility of remote sensing in species specific ecological 

studies (Williams and Hunt, 2002).  Nevertheless, the repeatable, synoptic character of 

remote sensing has made it attractive to ecologists studying invasive species (Mooney 

and Hobbs, 2000). 
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The advent of hyperspectral remote sensing such as the Airborne Visible and 

Infrared Imaging System (AVIRIS) has reinvigorated the hope that remote sensing will 

be able to provide ecologists with broad scale, species level data.  Several studies have 

confirmed the utility of AVIRIS (Martin et al., 1998; Hirano et al., 2003; Underwood et 

al., 2003; Williams and Hunt, 2002) and other hyperspectral sensor data (Schmidt and 

Skidmore, 2001; Bachmann et al., 2002) for species level studies.   

Remote sensing of Phragmites has been investigated (Lopez et al., 2004) using 

the PROBE-1 airborne hyperspectral sensor.  Flown at an altitude of 2170 m, the 

PROBE-1 data produced a nominal spatial resolution of 5 m.  The sensor collects data in 

128 bands from 440 to 2490 nm—104 bands were determined to be usable for image 

analysis.  Spectra drawn from the image were used along with the Spectral Angle Mapper 

algorithm to map dense Phragmites stands.  The investigation achieved 91 percent 

accuracy for the presence or absence of Phragmites. 

Success in species level remote sensing with AVIRIS and other airborne sensors 

has been mixed but encouraging.  As airborne systems, however, these systems lack the 

broad scale coverage and cost efficiency that satellite remote sensing provides.   

1-7: The Hyperion Sensor 

The Hyperion sensor aboard the EO-1 satellite is an experimental technology 

designed to provide the spectral detail of AVIRIS with the breadth of scale and cost 

efficiency of a satellite system.  Hyperion has 242 continuous spectral channels from 357 

nm to 2576 nm with approximately 10 nm bandwidths.  Seventy bands fall in the visible 

and near infrared range (VNIR) and 172 bands in the short wave infrared (SWIR) range 
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(USGS, 2001).  Hyperion’s spatial resolution is approximately 30 m for the entire 

spectrum—comparable to Landsat and several other space platform multispectral sensors, 

and approximately 36 times coarser than the two airborne sensors used in previous 

attempts at remote sensing of Phragmites (Bachman et al., 2002; Lopez et al., 2004).   

In its design, Hyperion’s spectral resolution exceeds AVIRIS which has 224 

bands across approximately the same spectral range (Williams and Hunt, 2002).  In 

reality many of Hyperion’s 242 bands are not usable because of the increased signal to 

noise ratio of Hyperion data.  This increased noise relative to signal is the consequence of 

Hyperion’s greater distance from the reflecting surface of the target and the increased 

atmospheric scattering and absorption that comes with space platform remote sensing 

(Lillesand and Kiefer, 2000).   

Hyperion’s lowest signal to noise ratio occurs in the SWIR range where it is 50:1, 

compared to 500:1 for airborne sensors (Kruse et al., 2002).  This was shown to reduce 

Hyperion’s capacity to resolve minerals (Kruse et al., 2002).  This may be less 

problematic for vegetation studies where much more of the discriminative information is 

found in the visible red, red edge, and near infrared parts of the spectrum (Datt et al., 

2003; Schmidt and Skidmore 2003). 

Investigators with the NASA EO-1 Science Validation Team (Datt et al., 2003) 

discuss recommended noise reduction steps for Hyperion prior to use with vegetation 

indexes.  The article recommends removing bands with the worst noise levels, correcting 

vertical striping and managing residual and introduced noise using Minimum Noise 

Fraction smoothing. 
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CHAPTER 2: RESEARCH OBJECTIVES 

2-1: The primary objective of this investigation will be to answer the question: 

Can Hyperion imagery and georeferenced training data be used to predict the 

presence of large stands of Phragmites?  Because Phragmites is a cause of wetland 

degradation and an indicator of wetland condition, this would provide a valuable tool for 

wetland study and management.  The design of this study is focused on answering this 

question.   

Two benchmarks of success for remote sensing of Phragmites are the 68 percent 

user’s accuracy of Bachman et al.’s study (2002) using the HyMap airborne hyperspectral 

sensor with 4.5 m resolution and 91 percent accuracy for Lopez et al. (2004) using the 

PROBE-1 airborne hyperspectral sensor with 5 m resolution.  Both sensors share finer 

spatial resolution and, being airborne sensors, have much better signal to noise ratios than 

a space platform sensor such as Hyperion.  Furthermore, Hyperion is a first generation 

instrument with some data anomalies such as the “spectral smile” (Jupp and Datt, 2004) 

and vertical striping (Han et al., 2002).  A more reasonable standard of success, 

considering these differences and considering the small proportion of the study area 

covered with the material of interest, might be a user’s accuracy of 50 percent or better.  

Accuracy in this range could almost certainly be improved on as techniques and 

technology evolve. 

2-2: A second related objective is to look at the spectral separability of Typha vs. 

Phragmites.  Is spectral variation greater between Phragmites and Typha training 

samples than it is among the samples of each species?  Monodominant stands of these 
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two species manifest in similar and often adjacent locations in the landscape making 

them difficult to distinguish in 30 meter resolution remote sensing imagery.  While these 

two species have some spectral differences they have proven difficult to distinguish with 

automated remote sensing techniques (Lopez et al., 2004).   

2-3: Finally, what changes can be seen in the study area from the time of the data 

used for the Wisconsin Wetlands Inventory (WWI) until the time of the Hyperion 

image acquisition?  These two data sets are not similar enough to use for a detailed 

change analysis, however, some broad changes can be observed.    
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CHAPTER 3: LITERATURE REVIEW 

3-1: Overview 

Through the three decades that remote sensing studies have been conducted from 

space platforms a large body of literature on vegetation studies has been generated.  

While the majority of these studies have been with multispectral data and only a minority 

have attempted species level classification, they provide the fundamental lessons for any 

remote sensing of vegetation.  Airborne remote sensing, both multi-spectral and 

hyperspectral, provides data more suited to species level studies, albeit at a much higher 

cost.  Several techniques relevant to use of Hyperion data for vegetation studies may be 

drawn from airborne hyperspectral studies, especially AVIRIS, which shares many data 

characteristics with Hyperion.  Many studies designed to inform multispectral and 

hyperspectral remote sensing of vegetation have been done with non-imaging 

spectrometers.  These studies provide laboratory type control and can inexpensively 

answer important questions about the reflectance characteristics of remote sensing 

targets.  Finally, while the Hyperion sensor is quite new, studies using Hyperion data 

have been published.  These can provide the some of the most specific guidance for 

further use of Hyperion data; however, they are few and relate to a limited number of 

applications. 

3-2: Non-imaging spectrometer multi-spectral scanner simulations 

To distinguish species within remote sensing images on the basis of spectral 

characteristics there must be greater spectral variation between those species than there is 

within each species (Schmidt and Skidmore, 2003).  Furthermore, these differences must 
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be resolvable at the spectral resolution of the sensor.  Much of the research aimed at this 

question has been done with non-imaging spectroscopy. 

Ernst-Dottavio and others (1981) used a spectrometer mounted on the strut of a 

helicopter to collect spectral data from an Indiana wetland.  The spectrometer averaged 

wavelengths within the ranges of the four Landsat MSS bands to roughly simulate 

Landsat data.  Discriminant analysis determined that samples taken over six different 

wetland classes could be separated by spectral characteristics alone.  While the study did 

not discriminate individual species, studies with similar design have been used to 

evaluate increasingly finer spectral and spatial resolutions and to develop more successful 

image analysis techniques. 

Ramsey and Jensen (1996) used field gathered spectrometer data to investigate 

spectral separability of three mangrove species.  The study was limited to simulated 

visible and near infrared multi-spectral bands (e.g. SPOT, TM and AVHRR) as well as a 

set of narrower bands designed to capture the maximum amount of information and 

variation within corresponding multi-spectral bands.  The study found considerably more 

spectral variation within each of the three mangrove species than existed between these 

three species.  From this they concluded that species discrimination between these three 

mangrove species was not possible with multi spectral remote sensing.    

3-3: Satellite and Airborne Multi-spectral Remote Sensing Studies 

In a 1999 article, Rutchey and Vilchek (1999) use a previously clustered SPOT 

image which they reclassify for the purpose of accuracy comparison with air photos in a 

study of cattail coverage.  When the original 20 classes including several mixed classes 
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were merged into 12 more general classes, they achieved overall accuracy of 

approximately 81 percent.  Classification included only two species based classes; 

otherwise classes were more generic—e.g. slough, open water, etc.  However, for the 

purpose of the study, they showed that the species of interest could be quantified for 

inventory and change detection. 

Two other TM studies used subpixel classification techniques to successfully 

detect tree species.  Oki and colleagues (2002) used unmixing techniques to detect alder 

in a Japanese mire.  The technique assumes that the reflectance of each cover class within 

a pixel varies linearly with the proportion of the pixel occupied by that cover class.  No 

accuracy numbers are published in the article; however Oki concludes that the unmixing 

method of estimating alder tree coverage was more accurate than maximum-likelihood 

classification of the TM image.  They also concluded that the accuracy of the unmixing 

method’s estimates varied with the quality of the data used to create the spectral signature 

or endmember for alder. 

In a similar study also using TM imagery, Huguenin and others (1997) were able 

to detect bald cypress and tupelo gum trees at the subpixel level.  The spectra of the 

endmembers were derived from pixels at known locations of relatively homogeneous 

stands within the TM image.  Accuracy was assessed on the basis of presence or absence 

of the material of interest in the ground site relative to image detection or non-detection 

of the species.  On this basis, cypress had an overall accuracy of 89 percent and tupelo 

had an overall accuracy of 91 percent. 
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Thomas Bernthal and Kevin Willis (2004) used Landsat 7 ETM+ data in a study 

of Phalaris arundinacea, a wetland grass species, with very similar goals to those of this 

paper.  Clustering the ETM+ data with the ISODATA algorithm and using an 

unsupervised classification they accomplished a remarkable 89 percent accuracy for the 

“heavy dominant” class.  The high accuracy rate must be considered against the fact that 

the classification scheme only recognized three classes—“heavy dominant,” co-

dominant, and “absent to sub-dominant.”  Furthermore, the study masked out all non-

wetland areas based on the Wisconsin Wetland Inventory classes.  This reduced the 

number of vegetation species from which Phalaris had to be distinguished.  

Malthus and George (1997) used field spectrometer data and Daedalus Airborne 

Thematic Mapper data to determine the separability of spectra for wetland plant species 

in a U.K reservoir.  Airborne imagery was collected at 800m above ground level resulting 

in approximately 2m spatial resolution.  Stepwise discrimintant analysis of the field 

spectrometer data determined that four wavelengths (626nm, 673nm, 912nm, and 

1000nm) could discriminate 19 of 20 spectra correctly.  Similar results were achieved 

with spectra derived from the Daedalus ATM image.  Forty of 48 spectra were judged to 

be separable based on the same stepwise discriminant analysis.  Much of the separability 

was attributed to the canopy structure of the various species.  Two genera, (Eleocharis 

and Equisetum), could not be separated based on their image spectra or field spectrometer 

spectra.  The signature for Phragmites appeared to be the most distinct of the species 

analyzed. 
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3-4: Non-imaging Spectrometer Studies for Hyperspectral Applications 

 Van Aardt and Wynne (2001) compared the performance of simulated AVIRIS 

and TM data for discriminating six southern tree species.  Field spectrometer samples 

were gathered from a boom truck in late summer.  The simulated TM data demonstrated 

almost equal facility to the simulated AVIRIS hyperspectral data in determining broader 

classes—deciduous and conifer.  The hyperspectral data discriminated between the two 

classes approximately 99 percent of the time, the simulated TM data about 94 percent of 

the time.  The simulated AVIRIS data discriminated species within the conifer class at 62 

percent to 84 percent accuracy and species within the hardwood class at 78 percent to 93 

percent accuracy.   The within class discrimination of the TM simulation data dropped to 

a little above 50 percent accuracy. 

Cochrane (2000) studied the spectral separability of tropical rainforest canopy 

vegetation sampled with a non-imaging spectrometer.  The first derivative of the red edge 

was calculated from the slope of the difference between the visible red absorption 

minimum and the near infrared reflection maximum in vegetation.  Cochrane found that 

the value of maximum inflection and the wavelength where maximum inflection of the 

red edge occurs contain useful information for species discrimination (Cochrane, 2000).  

Plotting histograms for the distribution of the maximum inflection of the red edge 

derivative, Cochrane shows that distributions are different for the different species in the 

study, suggesting that there is a basis for discriminating between species.   

In another study, also using non-imaging spectroscopy, Yamano and co-workers 

(2003) were able to discriminate between four grass species in an arid to semi-arid area 
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of northern China.  Two of the grass species were dominant in healthy grasslands.  The 

other two species were opportunistic invaders indicative of degraded grasslands.   

Field recordings of leaf specimen and canopy spectra for the four species were 

taken between 300 and 1100 nm.  The data were converted to fourth order derivatives to 

create the spectral peaks from which the researchers could discriminate between the four 

species.  The locations of local maxima and minima between 670 nm and 720 nm were 

able to discriminate between the leaf specimen samples.  When canopy spectrometer data 

were used, peaks for three of the four species shifted by 2 nm.  This left only one of the 

species as distinguishable with canopy spectral data.  This was still judged to be useful as 

an indicator of grassland condition.   

Spanglet and colleagues (1998) utilized portable spectrometer data to study the 

effect of canopy architecture on a list of vegetation indices.  Leaf spectra of three wetland 

species were recorded with an active spectrometer.  In situ canopy spectra were measured 

with a passive spectrometer.  Hardstem bulrush, an extremely vertical plant, had the least 

canopy coverage of the three plants studied and the least photosynthetic surface oriented 

toward the sensor.  Spanglet credits these architectural characteristics for the much lower 

NDVI of the bulrush canopy reflectance compared to its leaf measured NDVI.  At the 

other extreme, the most horizontally oriented of the three species—the yellow water lily, 

has large flat foliage almost entirely oriented toward the sensor which, in both leaf and 

canopy measures, was one leaf thick.  Thus, canopy and leaf measures of NDVI were 

very similar for yellow water lily.  Finally, the spherical canopy of the beaked sedge 

caused an intermediate difference in NDVI from leaf measurements to canopy 
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measurements.  This research suggests that differences in species architecture may be as 

important an element in the spectral signatures of in situ vegetation canopies as is 

individual leaf reflectance.  

Schmidt and Skidmore (2003) directly address the question of spectral 

separability among wetland plant species in a Netherlands saltmarsh.  The species in the 

study reflect local Dutch varieties; however, species belonging to several of the genera 

listed occur in temperate North American wetlands as well.  Reflectance profiles of 27 

vegetation associations were statistically analyzed to determine if there was greater 

spectral variability within or between groups.  Wavelengths at which each vegetation 

association’s median reflectance was statistically different from all other vegetation 

associations were determined.  Schmidt and Skidmore claim that these wavelengths can 

“potentially be used for identifying vegetation types.”  Following continuum removal for 

all the spectra, the same radiometric comparison and statistical significance tests were 

applied.  Continuum removal increased the number of wavelengths that were statistically 

different in the visible range but decreased the number in NIR.  Thus, some species were 

distinguishable at fewer wavelengths with continuum removal, e.g. Phragmites.  Schmidt 

and Skidmore conclude that the majority of the saltmarsh species are spectrally distinct.  

They suggest that with adequate calibration hyperspectral remote sensing may be able to 

identify many vegetation species. 

3-5: Airborne Hyperspectral Remote Sensing 

Martin and colleagues (1998) attempt to establish a link between hyperspectral 

image data—AVIRIS—and foliar chemistry of tree species for the purpose of species 
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level classification.  Lignin and nitrogen ratios associated with specific tree species can 

be used as markers that indirectly identify those species.  Nine AVIRIS bands previously 

determined to be useful in measuring canopy nitrogen and lignin were classified using a 

standard maximum likelihood algorithm for classification.  The accuracy matrix showed 

three of 11 classes to have low producer’s accuracy (red maple 33 percent, white pine 38 

percent, and hemlock 17 percent).  The deciduous/conifer mix was mapped with 60 

percent producer’s accuracy.  Two classes were accurate at 80 percent plus producer’s 

accuracy and the remaining four at 100 percent producer’s accuracy.   

Williams and Hunt (2002) applied a subpixel technique called mixture tuned 

matched filtering (MTMF) to AVIRIS to estimate fractional leafy spurge cover.  MTMF 

is a partial unmixing technique that finds the abundance of one spectral endmember and 

does not require that the spectra of the background be determined or estimated.  Pixel 

purity index (PPI) was used to find candidate pixels in the image and these were used to 

define the endmember spectrum for the MTMF analysis.  Two surfaces are output from 

the MTMF analysis.  One shows relative abundance per pixel of the spectral endmember 

of interest, the other is an infeasibility grid showing the degree to which the estimated 

spectral components explain the pixel’s spectrum.  Pixels with a high infeasibility value 

were not classified as leafy spurge.  The MTMF process performed best in the prairie 

areas (r2 = 0.79) and worst in forested areas (r2 = 0.57).  

Schmidt and Skidmore (2001) analyze signatures from laboratory spectrometer 

data and the Compact Airborne Spectrographic Imager (CASI) to determine the best 

wavelengths for discriminating among eight African grass species.  The visible red 
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wavelengths (550-680 nm) showed the greatest potential for discriminating grass species.  

The red edge and near infra-red also showed very large reflectance differences between 

grass species, however, within-species variation of NIR meant that reflectance in this 

range was not significantly different between species samples.   

Hirano and colleagues (2003) applied AVIRIS for discrimination of wetland 

species and species associations in the Florida everglades.  A supervised classification 

using Spectral Angle Mapper (SAM) with all 224 bands produced a species level map 

which was judged against a map from the Everglades Vegetation Database.  The 

producer’s accuracy achieved varied from 41.9 percent for button wood forest to 100 

percent for spike rush and leatherleaf.  The authors attribute the low accuracy in some 

classes to the mixed pixels resulting from the 20 meter resolution of AVIRIRS and 

specifically caution that the 30 meter resolution of the Hyperion sensor will present 

similar limitations. 

3-6: Hyperspectral Remote Sensing of Phragmites 

Charles Bachman and others (2002) investigated the use of HyMAP airborne 

hyperspectral images for automated classification of a saltwater wetland on Smith Island 

off the coast of Virginia.  The study used data processed with a feature extraction 

algorithm called “projection pursuit.”  This algorithm was described as serving the same 

purpose as Principal Component Analysis—to reduce data dimensionality.  Supervised 

and unsupervised classifications were utilized.  The article points out two specific 

difficulties in discriminating Phragmites australis in its natural environment.  The first is 

the tendency for the stands of Phragmites to occur with the dimension perpendicular to 
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the shoreline being much narrower than the dimension which is parallel to it.  This often 

means that large contiguous areas of Phragmites present as highly mixed pixels.  A 

second problem is that Phragmites has spectral characteristics that are similar to other 

wetland plants.  The authors say its “unlikely that systems with a few broad spectral 

channels would be able to discriminate it,” in the midst of other similar species.  Their 

results supported this statement.  Phragmites was one of the four most confused of the 19 

cover types in the classification.   

Ricardo Lopez and others (2004) used data collected with the PROBE-1 airborne 

sensor to detect Phragmites in a Lake Erie wetland.  The PROBE-1 data had very similar 

spectral and spatial resolution to the HyMap data used by Bachman et al. (2002).  This 

investigation also used endmembers selected from within the image data.  Homogenous 

Phragmites endmembers were selected using ground referenced GPS points.  Those were 

used as training data in a supervised classification using the Spectral Angle Mapper 

(SAM).  Based on the very simple accuracy matrix of predicted presence or absence of 

Phragmites versus reference data presence or absence of Phragmites, the study predicted 

the presence or absence of Phragmites with 91 percent accuracy. 

3-7: Application of Hyperion Data 

Hyperion was shown to be more effective in classifying different floristically 

based classes of rainforest vegetation than were 3 space-based multi-spectral sensors 

(Thenkabail, 2004).  The study compared IKONOS, ETM+, ALI, and Hyperion.   The 

study used classes defined by general attributes that were well suited to Hyperion’s 30 m 

spatial resolution.  Classes included, fallow, mixed secondary forest, mature secondary 
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forest, young secondary forest and so on.  The overall accuracy in classifying the nine 

broad classes was 96 percent for Hyperion compared to 48 percent for IKONOS, 42 

percent for ETM+, and 51 percent for ALI. 

Apan and others (2004) used discriminant analysis to determine which narrow-

band indexes based on Hyperion data were the best indicators of plant stress caused by 

the “orange rust” disease in sugarcane.  They found that indices taken from the red edge 

spectra were poor indicators of disease.  Indices using only NIR wavelengths performed 

moderately better.  The best indices were those using the 1600 nm short wave infrared 

band in a ratio with either an 800 nm NIR band or 550 nm green band. 

A forestry study in British Columbia was successful in classifying a Canadian 

forest to 10 classes—most of them to species level (Goodenough et al., 2002). 

Classification to eleven classes, most of them defined by a dominant tree species, was 

92.9 percent accurate.  This success was described as “operational” accuracy for forest 

classification.  This accuracy was compared to 84.8 percent for ALI and 75 percent for 

ETM+ classifications of the same area. 

In a study attempting to quantify and map wildfire fuel potential in a California 

forest, Ustin and colleagues (2002) found that in general Hyperion “produced maps of 

abundances similar to AVIRIS in quality.”  This was in spite of the fact that “Hyperion 

performs more poorly in producing maps based on specific narrow band features due to 

the lower SNR.”  In fact, Ustin et al. were unable to use the bandwidths usually used to 

calculate moisture indices at around 980 nm due to poor signal to noise ratios and instead 

used the signal from around 1200 nm.  
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3-8: Conclusions 

 The literature shows some success with species level classification of 

multispectral data (Bernthal and Willis, 2004; Oki et al., 2002; Huguenin et al., 1997).  

However, for many species there seem to be no reliable spectral differences at the spatial 

and spectral resolution of space platform multispectral scanners (Ramsey and Jensen, 

1996).  Tightly controlled non-imaging spectrometer studies, using spectral resolutions 

comparable to hyperspectral scanners, have been able to find spectral differences 

adequate to distinguish species of grasses, trees and wetland plants including Phragmites 

(Yamano et al, 2003; Schmidt and Skidmore, 2003).  Some of these spectral differences 

have been successfully exploited in species level classifications of airborne hyperspectral 

images from AVIRS, HyMap and PROBE-1 sensors (Williams and Hunt, 2002; 

Bachman et al., 2002; Lopez et al., 2004).  Bachman et al. (2002) and Lopez et al. (2004) 

predicted Phragmites in airborne hyperspectral images with 68 percent and 91 percent 

accuracy respectively.  Comparison of airborne hyperspectral data with Hyperion 

suggests that even with coarser spatial resolution and a decreased signal to noise level 

species level distinctions can be made (Ustin et al., 2002; Goodenough et al., 2002).  This 

study will draw on the lessons and techniques in the preceding literature as it tests 

Hyperion’s facility for distinguishing Phragmites from its wetland surroundings. 
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CHAPTER 4: METHODOLOGY – Study Design 

4-1: Overview 

 Methodology has been divided into two chapters.  This chapter describes steps 

leading up to actual image analysis, the logic of those steps and some of the objectives 

served.  The study site is described and the reasons for choosing it explained.  The 

decision to use training signatures extracted from the image is explained and the 

collection of GPS locations used to extract those signatures is described.  Then, 

preprocessing of the image prior to image analysis including georectifying, removal of 

bad bands and addressing vertical striping anomalies is detailed. 

The next chapter covers the image analysis and accuracy assessment.  The two 

approaches to image classification are explained.  Finally the accuracy assessment design 

and the collection of accuracy assessment field data are described. 

4-2: Study Site 

 This study received its primary funding from the Great Lakes Environmental 

Indicators (GLEI) research project which is aimed at developing indicators of wetland 

condition for the coastal wetlands of the Laurentian Great Lakes.  The choice of where 

along the Great Lakes coast to locate the study site was based on a variety of 

considerations.   

Monospecific stands of Phragmites that would be resolvable with the 30m spatial 

resolution of Hyperion was the primary criterion.  Large stands of Phragmites were 

observed in the Green Bay area in July of 2004 at Point AuSable, Little Tail Point, and 

the extreme SW corner of Green Bay.  Comparison with sample data from the GLEI 
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study (Johnston et al, in review) and aerial photos showed that in some cases these large 

stands of Phragmites had dramatically increased in area in only a few years.  This met the 

criteria for the presence of large stands of Phragmites and further suggested that these 

stands were recent invaders. 

A second criterion for site selection was orientation of the shoreline.  The 

Hyperion sensor collects images in 7.5 km wide swaths along its near-polar, sun-

synchronous orbit.  This makes the Hyperion images very narrow and oriented at a 

northeast to southwest angle.  A study site oriented along a north to south stretch of coast 

allows a much longer segment coastline to be captured in a single image than a more east 

west oriented study site would.   This made both the east and west coasts of Green Bay 

good targets for the sensor. 

 
Figure 3: A study site (solid red, left; red outline, right) was chosen on the west shore of Green Bay.   
This maximized several considerations, one of which was matching the northeast to southwest 
orientation of the Hyperion image to a similarly oriented shoreline. 
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The WWI (Johnston, 1984) showed that the west coast of Green Bay had several 

areas of emergent wetlands—probable areas of Phragmites invasion.  These wetland 

areas coincided with two areas of public land and a private preserve: the Pensaukee 

Public Hunting Ground, the Oconto Marsh State Game Refuge, and Oconto Marsh—a 

private hunting preserve.  Public land was preferable for ease of access issues.  

Additionally, hunting grounds and game refuges were assumed to be in a more natural 

state than most private land in the area. 

The decision was made to center the study site around the Oconto Marsh area on 

the west coast of Green Bay (figure 3).  Image acquisition was scheduled during early fall 

when spectral differences between Phragmites and other wetland species are most 

pronounced (Bachman et al., 2002; Bernthal and Willis, 2004; Wolter, personal 

communication).   Weather and availability of student help for carrying out field work 

were also judged to be optimal during the early fall.  The data acquisition request was 

made for between the first week of September and the second week of October.  Actual 

data acquisition took place on September 4, 2004 at 11:23:53 a.m. CDT.  Conditions 

were fair to good yielding an image with less than 25 percent cloud cover.  While some 

clouds fell within the study area they were outside of the public land and the private 

hunting preserve. 

To focus on GLEI’s aim of developing an indicator of wetland condition for the 

coastal wetlands of the Great Lakes, the study area was limited to the coastal area of the 

image.  To do this a buffer extending 750 meters either side of the shoreline was created 

along the stretch of the Green Bay shoreline that passed through the image.  The National 
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Oceanic and Atmospheric Administration’s (NOAA) “medium resolution digital vector 

shoreline”, (NOAA, 1992) was used to define the shoreline for this purpose.  The buffer 

was adjusted to include an area of dense Typha which was used a training data.  The 

adjusted study site covered 4734 hectares. Approximately 39 percent of this was open 

water. 

4-3: Choice of Training Data 

 Classification of remote sensing images relies on some form of reference data to 

relate spectrally or visually identified features within the image to ground cover features.  

Hyperspectral remote sensing emphasizes the use of spectral signatures of land cover 

classes or materials of interest.  These spectral signatures can be collected with 

spectrometers and compiled in spectral libraries or extracted from within remote sensing 

images by identifying one or several pixels that are the collected reflectance of the 

ground cover or material of interest.  The later approach is more practical and therefore 

more common. 

Use of image derived spectra was determined to be appropriate for this 

investigation and better fit the available resources of the study.  Field collected spectra or 

spectral library signatures would have required atmospheric correction of the image to 

surface reflectance (ERDAS, 2002b; Schmidt and Skidmore, 2001).  Because 

atmospheric correction of Hyperion data is still technically problematic (Jupp and Datt, 

2004) and at the time of the image analysis, no software package designed for 

atmospheric correction of Hyperion data was available on the SDSU campus, 

atmospheric correction was determined to be impractical.    
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Furthermore, spectral variation in vegetation caused by phenological and 

environmental conditions makes it difficult to collect field spectrometer signatures that 

match the vegetation in any given image from any source other than that image.  Finally, 

the literature of species level remote sensing showed that image derived spectral 

signatures were widely used (Malthus and George, 1997; Lopez et al., 2004; Bachman et 

al., 2002) and generally preferred (deLange et al., 2004) for vegetation studies.   

4-4: Field Data Collection 

To extract spectral signatures from within the Hyperion image, GPS points were 

collected for large stands of Phragmites and representative examples of the other 

vegetation classes from within the study area at as near to the date of image collection as 

possible.  An initial investigation of the study area was made on August 31, 2004.   

Several GPS points were collected and photographs and notes were taken in preparation 

for later field work.  Three of the points collected at this time would later be used as 

reference points for image derived Phragmites spectra (dp1n1w1, dp3, and R13, table 2).  

The vegetation classes to be used for image classification (table 1) were developed from 

observations made during this initial trip. 

On September 24 and 25, 2004 field data were collected for 19 points.  

Prospective locations of large Phragmites stands as well as 6 classes of non-target 

vegetation were pre-selected based on aerial photography, the WWI, United States 

Geological Survey (USGS) quadrangle maps, and the Hyperion image itself.  Additional 

or alternative collection points were selected in the field when pre-selected ones proved 

inadequate and as better sites were encountered.  Collection was made by two teams of 
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two persons each.  Data collection included GPS points, digital photographs, a sketched 

map of a 60m square surrounding the point, a list of the most prevalent species of 

vegetation, descriptions of the sample point area, and samples of plant species which 

could not be identified in the field.  Points for deep water (water1), shallow water 

(water2), or impervious surface were not field collected because they could reliably be 

taken from available aerial photography and image signatures. 

Table 1: Field description of vegetation classes used. 
Vegetation 
Class Description 
Impervious 
surface   Area is dominated by road, parking lot, sidewalk, roof tops, bare soil 

Meadow   
More than 50% of the area is dominated by upland and/or wetland grass 
species; or grass species account for more than 50% of the canopy of the area 

Water 2   
predominantly shallow standing water (generally <1 m) with few floating 
plants, SAV, or emergent plants;  

Forest 
Deciduous   

The 30 x 30 quadrat surrounding the sample point is predominantly broadleaf 
species.  Understory is relevant only where canopy gaps would allow it to 
receive full light and be visible from above.  Include mixed conifer/deciduous 
areas that are not clearly dominated by needle leaf species 

Forest Conifer     

Clearly dominated by with needle leaf species.  Understory is relevant only 
where canopy gaps would allow it to receive full light and be visible from 
above 

Scrub/shrub 

Area surrounding the sample point is populated with willow, dogwood, and 
other woody shrub species such that during leaf-on season they would account 
for more than 50% of the canopy.  Trees more than 4 meters account for less 
than one third of the canopy.   

Typha   

Typha dominant in more than 50% of area surrounding sample point; or Typha 
mixed thoughout & accounts for 50% of the canopy surrounding the sample 
point. 

Phragmites  

Phragmites dominant in more than 50% of the area surrounding the sample 
point; or Phragmites mixed throughout & accounts for 50% of the canopy 
surrounding the sample point. 

Mixed 
emergent 
wetland   

The area surrounding the sample point is not dominated by any one species, it 
is predominantly a mixture of non-woody non grass emergent wetland 
vegetation; if Phragmites or Typha are present neither of them alone accounts 
for more than 50% of the canopy. 
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Field data were georeferenced using two Garmin MAP76 consumer model GPS 

units.  One unit was held at approximately 3.5 meters above the ground by a “holster” on 

a pole attached to the top of an 8 ft. aluminum ladder.  The other unit used an external 

antenna on a tripod at about the same elevation above ground.  For each GPS point 

approximately 300 points were collected in the averaging mode.  At all times the Wide 

Angle Augmentation System (WAAS) was used for realtime differential correction. 

Both arrangements had been tested for accuracy prior to the field trip, using the 

units’ own estimated accuracy.  The GPS unit using the ladder mounted “holster” on a 

pole typically achieved accuracy just over 1 meter.  The unit using the external antenna 

did slightly better—occasionally registering accuracy to less than .8 meters. 

Two series of digital photographs were taken for each sample point.  The first was 

four shots in the directions of the four compass points from the top of an 8 ft. ladder.  

This was intended to capture the degree of homogeneity of the vegetation in the 60 m x 

60 m sample area.  It also provided some additional information about the composition 

and layout of that vegetation. 

The second series of digital photographs was taken along a transect running 

through the sample site.  The photographs were spaced at 0 m, 7.5 m, 15 m, and 25 m in 

opposite directions from the GPS points.  The distances were determined by using a 

measuring tape attached to the ladder at the point where the GPS point was taken.  The 

orientation of each of these transects was adjusted to a 90 degree angle from the path 

taken into the center of the study site by the field workers.  This had the dual function of 
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avoiding pictures of trampled vegetation and ensuring that more of the area within the 

study site was visually observed by field workers. 

A map of the vegetation in a 60 m square area surrounding the point was sketched 

from the top of the aluminum ladder at the GPS collection point (figure 4).  This only 

included vegetation constituting a significant portion of the canopy.  The observer 

sketching the map used a parallax optical rangefinder to fix distances for delineation of 

different vegetation patterns.  They were also able to obtain distances from the other 

worker taking transect photographs.  A second, smaller map was sketched of any 

standing water or wet soil beneath the vegetation canopy. 

A list was made of the most significant vegetation associations in the sample site 

area in descending order of prevalence.  Each of these sites had been selected as training 

data for one of the 6 vegetation classes.  Therefore, the first association listed on each 

data sheet was from among the study defined classes (table 1).  Each species or 

association listed was associated with areas delineated on the sketched map.  This 

allowed for a rough estimate of the proportions of various plants or associations captured 

by the pixels overlaying each sample site.  The density of the vegetation association 

within the delineated areas of the sketched map was recorded as a value from 1 to 6, with 

6 being the densest.  Specimens were collected for species which could not be identified 

in the field if they made up a significant fraction of the sample area. 
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Figure 4: Data sheets recorded and mapped the dominant vegetation at each sample site as well as 
exposed soil, standing water and open water.  GPS coordinates were recorded as a back up the GPS 
unit's memory. 
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Notes were also made on data collection sheets with respect to GPS accuracy, 

time of collection, number of points collected and the latitude and longitude of the 

collection point.  Additional notes were made when anomalies in the sampling process 

occurred.  An example of this would be when transect photographs were taken out of 

sequence. 

4-5: Data Preprocessing 

Hyperion level 1R data delivered by the USGS is radiometrically corrected.  It is 

not geometrically corrected or georeferenced.  It is in the Hierarchical Data Format 

(HDF) version 4.1r5 (USGS, 2005).  Delivered data includes 44 bands which are not 

calibrated and have data values set to 0.  Prior to classification outlier values and vertical 

striping of the image were addressed, the image was georectified, bands with high levels 

of noise were removed and a strategy for applying Minimum Noise Fraction (MNF) noise 

removal was determined. 

4-6: Vertical Striping 

Dark vertical striping is visually apparent in several of the Hyperion bands.  These 

visible stripes are caused by miscalibrated, dead and stuck detectors in the pushbroom 

sensor of Hyperion.  Uncorrected, these anomalous values can appear as extreme values 

to automated classification algorithms and introduce noise into the classification process.  

The problem is significant enough that Australian scientists working on the evaluation 

and validation studies for EO-1 all made corrections to address the stripes before using 

the data (Jupp and Datt, 2004).  An article addressing these abnormal pixels (Han et al., 

2002) separated them into four distinct classes.  These divisions did not correspond 
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directly to the anomalies found in the data for the Green Bay study site.  However, the 

general strategies described by the Han team and by Bisun Datt and others (2003) to 

address the stripping anomalies were adapted to address the most affected bands. 

Striping anomalies in the Green Bay Hyperion image could be put into three 

classes: 1) Columns with intermittent dark pixels. 2) Columns that were consistently 

darker than the columns on either side but that generally tracked the changes in digital 

number of those two adjacent columns. 3) Columns that were darker than their two 

adjacent columns but do not track with the changes in digital number of those columns. 

The first class of striping was not addressed unless the number of dark pixels was 

well over half of the pixels in the column.  When that threshold was met the stripe was 

addressed by using a convolution filter to average the pixels to the right and left of the 

affected column and substitute that value for the pixel in the stripped column.  The fix 

was applied to the entire length of the affected column. 

The second class of stripe is described as arising from miscalibrated detectors 

(Datt et al., 2003).  Except in the more extreme instances these columns contain valid 

data but their digital numbers are offset from the data of the well calibrated detectors by a 

fairly constant value.  These columns could be identified by graphing the values of dark 

column and its two adjacent columns for comparison (figure 5).  When the dark or 

stripped column’s values roughly paralleled the values of the two adjacent columns but at 

a consistently lower level it was judged to be the result of miscalibration.  
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Figure 5: Columns where the dn followed the changes in ground reflectance by generally paralleling 
the values of the adjacent columns were identified as resulting from miscalibrated detectors.  These 
columns were normalized to the two immediately adjacent columns 
  

A simple offset added a fixed value to each pixel such that the means of columns 

would be normalized.  This would not address the difference in variability that could be 

caused by the lower gain of the miscalibrated detectors of the dark columns.  Variability 

statistics were taken from the columns to the right and left of the dark columns.  The 

standard deviations of pixels in the normal columns were compared to the standard 

deviations of pixels in the striped columns with a Tukey's Studentized Range (HSD) Test.  

The test showed that standard deviations in the striped columns were not statistically 

different from standard deviations in the normal columns.  On this basis it was decided 

that addressing the variability of pixel values in striped columns was not necessary. 

Offsets were calculated by averaging the mean pixel value of the columns to the 

right and left of the striped columns and subtracting the mean pixel value of the dark 
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column from that average.  By selecting the affected column and applying a single offset 

value to every pixel in the column the striped columns were normalized to the local mean 

(figure 6). 

 
Figure 6: Offsets were applied to pixels of the dark columns caused by miscalibrated detectors, 
normalizing them to the mean of pixels in the two adjacent columns. 
 
 
4-7: Image Rectification 

The panchromatic band of a Landsat 7, ETM+ orthorectified image projected to 

Albers, NAD 83 was used as a base map for georectification.  The Albers projection is 

standard for the GLEI project from which the ETM+ image was acquired.  The 15 meter 

cell size provided adequate resolution and the terrain correction insured that the 

geographic fidelity was consistent throughout the image. 
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Twelve control points were selected from throughout the entire Hyperion image.  

The 3 of these with the largest residuals were rejected.  The remaining 9 were used for a 

2nd order polynomial transformation.  The resulting transformation had an estimated total 

RMS error of .2962 pixels or about 4.443 meters.  Nearest neighbor resampling was used 

to retain as much spectral fidelity as possible.  Visual analysis of the rectified image 

overlaid on the ETM+ image confirmed that rectification was successful. 

4-8: Bad Bands 

While the Hyperion sensor was designed with 242 bands, the level 1R data is 

delivered with 44 of those bands set to zero.  The data in these bands were judged to have 

too low a signal to noise ratio to be usable.  Among the remaining bands there are several 

that contain enough noise that they are often removed before image analysis.  Bands with 

excessive noise can be identified visually and are generally found in the spectral ranges 

where atmospheric water vapor absorbs most of the incident and reflected light (Datt et 

al., 2003).  There is also spectral overlap between the SWIR and VNIR sensors making 

two pairs of bands redundant. 

Visual inspection showed that an additional 51 of the SWIR bands had very poor 

signal to noise ratios.  These bands were removed from image analysis.  No additional 

bands from the VNIR sensor were removed from the data.  This left a total of 147 bands 

for spectral analysis—50 from the VNIR sensor and 97 from the SWIR sensor.  The bad 

bands were removed from the image analysis. 
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4-9: Minimum Noise Fraction 

Minimum Noise Fraction (MNF) is a modified Principal Component transform 

which can be used with hyperspectral imagery.  It can be used to generate a transformed 

image where the systematically occurring noise is segregated into progressively noisier 

bands and, conversely, meaningful image information is concentrated into fewer bands 

(ERDAS, 2002a).  The noisiest bands can be eliminated from further processing.  This 

reduced dimensionality has the further advantage of reduced computational demands 

during processing. 

Classification can be performed on the MNF bands with the least noise or the 

transformation can be reversed to reconstruct an image with the original number of layers 

minus some of the noise.  Alternatively, the MNF transform can be calculated with each 

iteration of the analysis algorithm without outputing an MNF image.  The later approach 

was used. 

The MNF transform can be based on the entire image or a subset of the image.  

Using a homogenous area of the image to calculate the transformation helps to isolate 

systematic noise from meaningful image information (ERDAS, 2002a).  An area of open 

water was used to calculate the transform that was then applied to analysis of the study 

area of the image. 

In part, the decision to use the MNF transformation was based on trials with the 

Spectral Correlation Mapper and the target detection routine where it improved the 

selectivity of the training samples.  Training samples extracted from the best of the field-

identified Phragmites sites were run with and without the MNF transformation.  The 
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MNF transform trials identified fewer pixels overall and more often identified pixels 

relating to known areas of Phragmites.  In addition, MNF is widely used with 

hyperspectral data (Apan et al., 2004; Hirano et al., 2003; Kruse et al., 2003).  Finally, 

Datt et al. (2003) demonstrated that when MNF is applied to Hyperion data with the 

striping anomalies corrected the resulting noise reduction compares favorably with the 

noise reduction achieved in HyMap airborne hyperspectral sensor data. 
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CHAPTER 5: METHODOLOGY - Image Analysis 

5-1: Overview 

 The primary focus of image analysis was use of the spatially referenced training 

data to produce a classification that would show the locations of large monodominat 

stands of Phragmites.  Two strategies were used to accomplish this.  First, a target 

detection routine was applied to the Hyperion image to produce a “yes/no” map of 

predicted areas of dense Phragmites.  Second, an unsupervised classification assigned 

200 spectrally distinct classes from the Hyperion data to ground cover classes, including 

Phragmites, based on the spatially referenced training data.  In addition, classes in the 

unsupervised classification were merged to broader classes to show the pattern of 

lakeward expansion of the emergent wetlands relative to the Wisconsin Wetlands 

Inventory and 1998 Ortho Photos.  

5-2: Target Detection 

Spectral Angle Mapper (SAM) is an analysis algorithm which treats spectra as n-

dimensional vectors where n is the number of bands in the image and in the training data 

(figure 7).  The theory is that difference in angle between vectors of two different spectra 

is a measure of the similarity (or dissimilarity) of the materials reflecting the light (Kruse 

et al., 1993).  Spectral Correlation Mapper (SCM) is a refinement of the SAM algorithm.  

Where SAM cannot distinguish between positive and negative correlation, the SCM 

algorithm standardizes vectors prior to calculating the spectral angles such that positive 

and negative correlations between samples can be distinguished (Lumme, 2004). 
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Figure 7: The SAM algorithm calculates a 
vector passing through a point plotted in 
“n” dimensional data space based on the 
values for each band of data used.  The 
angle between the vector of a reference 
spectrum and a test spectrum quantifies the 
two points’ spectral similarity or 
dissimilarity.                                               
 
(Based on Kruse et al., 1993) 
 
 
 
 

 

Several factors were considered in deciding to use the Spectral Correlation 

Mapper algorithm.  The Spectral Correlation Mapper is presented as a refinement of 

SAM which has broad application in hyperspectral remote sensing of vegetation (Artigas 

and Yang, 2004; deLange et al., 2004; Lumme, 2004; Ustin et al., 2004; Eckert and 

Kneubühler, 2004).  SAM and by inference SCM are designed for use primarily with 

hyperspectral data (Kruse et al., 1993).  An additional practical advantage was that SAM 

and SCM are supported in ERDAS Imagine 8.7 Spectral Analysis Workstation (ERDAS, 

2002b) which was the software being used for all other steps of the image processing and 

analysis. 

Training data spectra (described in a previous section) were extracted from the 

Hyperion image using the tools in the Spectral Analysis Workstation.  An overlay of the 

GPS points where Phragmites had been identified in the field was used to locate the 

pixels associated with those sample sites in the image.  Spectra were extracted from these 

single pixels and compiled in “Spectral Library” files.  In some cases field-located 

Phragmites GPS points fell near the boundaries of pixels.  In these cases the spectrum of 
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the pixel adjacent to the sample pixel was extracted and labeled as well.  After 

examination of the digital photos taken at these sites, the maps drawn of these sites at the 

time of data collection, aerial photographs and graphs of the spectra, some of these 

adjacent pixels were judged to more probably contain a majority of reflectance from 

Phragmites than the pixel in which the sample site GPS point fell.  These adjacent pixels 

were further tested against the GPS-point pixels in target detection trials and, when 

judged superior in selecting known Phragmites sites, were retained as the training data 

for the associated sample site. 

The target detection dialog box allows generation of either a continuous value or a 

yes/no output.  The continuous value option yields a raster with a range of values 

corresponding to the degree to which the image pixels match the target spectrum.  The 

yes/no option yields a two class thematic raster showing pixels that meet a user defined 

threshold for matching the target spectrum.  This threshold is defined in radians of 

separation between the target vector and the image pixel vector as defined by the SCM 

algorithm. 

Initial iterations were done with the yes/no output option which required a user 

defined threshold.  Several trials with different spectra revealed that different targets gave 

very different results with the same threshold.  For example a threshold of 5 radians may 

yield no pixels within the angle of the threshold for sample A—clearly too small a 

threshold for that sample.  Sample B might yield more than 2,000 pixels which could be 

seen to fall in several different types of land cover—clearly too large a threshold.  The 

process of trial and error to determine a threshold that produced a selective enough match 
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to each target spectrum took many trials, each of them taking several minutes of 

processing time for the computer to generate output. 

An alternative approach was devised to decrease processing time.  The 

“continuous” option was used in the target detection dialog box to create a raster with a 

range of values from 0 to 1.  A value of 0 was a match with the SCM vector for the target 

material.  A value of 1 would be the maximum angle of separation from the target vector 

and presumable the most dissimilar target spectrum.  This continuous value raster was 

then imported into ArcGis 8.3 where it was displayed as a classified raster with two 

manually defined classes.  The class between 0 and the manually defined boundary could 

then be adjusted to include pixels with greater or lesser angles of difference between the 

target spectra and the image pixel spectra. 

This process was carried out for each of the pixels selected as Phragmites training 

data.  The boundary or threshold was repeatedly adjusted until the “low SCM angle” 

class (between 0 and the user defined threshold) overlaid known Phragmites locations 

and probable Phragmites locations but did not overlay areas known not to contain 

significant Phragmites populations.  The target spectra from some training samples 

produced output that corresponded well with the location of other known stands of 

Phragmites.  The thresholds for these samples were adjusted to include many pixels in 

the presumed Phragmites class.  Other training samples produced layers that seemed to 

have less relationship with known and probable Phragmites locations.  For these samples 

the threshold was lowered until they included only a small number of pixels which could 

not be ruled out as Phragmites locations. 
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This approach relied considerably on reference data to determine the degree to 

which each training sample would contribute to the final classification.  If a training 

sample’s SCM output was selective of other known Phragmites locations from the 

training samples, this was a basis for expanding its threshold and in turn its contribution 

to the classification.  On the other hand if a training sample’s SCM output was selective 

of areas shown to be improbable locations of Phragmites that was a basis for constricting 

the sample’s threshold and in turn decreasing its contribution to the classification.  

Reference data used included digital photographs taken during field data collection, aerial 

photographs from April 1998, digitized USGS 1:24,000 quadrangle maps, USGS Digital 

Elevation Models, and the Wisconsin Wetlands Inventory in digital format. 

Table 2: Thirteen training samples collected during August, September and October of 2004 were 
used for the target detection classification. 

sample 

point id 

number of 

pixels 

Percentage of total pixels mapped 

as Phragmites 

bp3 61 9.53% 
bp2 16 2.50% 
bp1 32 5.00% 
ap3b 16 2.50% 
dp1n1w1 20 3.13% 
dp3 42 6.56% 
cp7 21 3.28% 
cp6e1 67 10.47% 
cp5e1 62 9.69% 
cp4w1 99 15.47% 
cp2 60 9.38% 
r13 126 19.69% 
cp1e1 18 2.81% 
total 640 100.00% 

 
Thirteen training samples were included in the final classification.  The number of 

pixels that each sample contributed to the classification ranged from 16 pixels for point 
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bp2 to 126 pixels for r13 (table 2).  In many cases the pixels selected by one training 

sample overlapped the pixels selected by other training samples.  However, the majority 

of pixels in the final classification were unique to the layer of only one training pixel. 

The 13 layers generated by this process were combined to create one thematic 

layer with only two classes—a Phragmites dominant class (“Phragmites”) and a 

Phragmites subdominant class (“not-Phragmites”).  The “Phragmites” class was defined 

as where dense Phragmites (coverage class 5 or 6) covered more than half of the sample 

site or where less dense Phragmites (cover class 3 or 4) covered all or nearly all of the 

sample site or some combination of dense and less dense Phragmites that resulted in 

Phragmites being the majority vegetation in the canopy.  In the final thematic map 

(appendix A) the “Phragmites” class was the union of the “Phragmites” layers from all 

13 training samples.  The “not Phragmites” class of the final thematic map was any pixel 

not classified as “Phragmites” in any of the 13 layers. 

5-3: Unsupervised Classification 

The second strategy tested to identify dense stands of Phragmites was 

unsupervised classification.  The same study area was used for the both target detection 

and the unsupervised classification. The same 147 bands used in the target detection 

routine classification were used in the unsupervised classification.  The bands set to zero 

prior to distribution of the data and the bands determined to be too noisy by visual 

inspection were removed and a new 147 band image file was created.  Preprocessing of 

the data was the same as for the target detection routine with the exclusion of the MNF 

transform. 
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The ISODATA algorithm sorts pixels into clusters by determining the “minimum 

spectral distance” from a user defined number of mean cluster locations in n-dimensional 

data space.  In the initial iteration the means are established automatically or provided by 

the user.  The initial set of clusters is used to recalculate new mean locations for the next 

iteration.  Pixels are then regrouped by minimum spectral distance to this new set of 

means.  This process repeats either a user defined number of iterations or until iterations 

produce a user defined minimum amount of pixel regrouping. (ERDAS, 2002a)  These 

pixel groupings are output as a classified image and associated signature file.  This 

process creates a thematic map of pixels with similar spectral characteristics as defined 

by the ISODATA algorithm.  It is the assumption of spectrally based remote sensing that 

these spectrally defined classes correlate with land cover classes.  The corresponding land 

cover classes must be assigned by an analyst based on some form of reference data. 

Initial clustering trials generated 77 and 150 spectral classes.  Comparison of 

these classifications to the field data showed that many of the spectrally defined classes 

clearly overlapped 2 or more of the 11 land cover classes defined by the study.  The 

increase from 77 to 150 classes or clusters decreased this overlap somewhat.  However, 

in many cases the new subclasses were within classes that were not of primary interest to 

the study rather than subclasses within the wetland vegetation areas.  The decision to use 

200 classes was based on this diminishing return of adding classes versus the additional 

time required to assign those spectral classes to land cover classes.  Additionally, as the 

number of spectral classes was increased the likelihood of any reference data being 
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associated with a given class decreased.  Without reference data the additional spectral 

classes could not be associated with ground cover classes. 

Each spectral class or cluster was assigned to one of 11 classes of land cover.  

Two of those classes—clouds and open water—were masked out of the accuracy 

assessment.  The remaining 9 classes are the same as for field data collection (table 1).  

Class assignments were made based on GPS locations of known vegetation and digital 

photographs from field data collection.  Digital Ortho Photos, digitized USGS quadrangle 

maps, and digital elevation model maps were used as well.  For the final map (appendix 

B), “forestD,” “forestC” and “scrub/shrub” were merged into a single class, “woody 

vegetation.”  

5-4: Accuracy Assessment 

The number of sample points required for a statistically sound estimate of remote 

sensing accuracy varies with the purpose, scale and location.  In most cases, however, 

meeting ideal statistical standards exceeds the resources of the study.  Congalton (1991) 

points out that a one-half percent sample of a Landsat Thematic Mapper scene would be 

300,000 pixels.  It is necessary then to make concessions to practicality, and the rule of 

thumb of 50 samples for each land cover class was used as a guide for this study 

(Congalton, 1991). 

Collecting data for 450 sample points (50 points per class for all 9 vegetation 

classes of the unsupervised classification) would be beyond the resources of this 

investigation.  Congalton endorses the practice of adjusting the number of points 

collected per class based on the objectives of the study and the importance of the class 
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(Congalton, 1991).  The primary objective of this study was to determine the feasibility 

of detecting Phragmites within Hyperion imagery.  Fifty points were collected within the 

“Phragmites dominant class” of the target detection routine and 50 points were selected 

for the “Phragmites” class of the unsupervised classification.  An additional 50 points 

were selected from the “Phragmites sub-dominant or absent” class of the target detection 

routine.  These points would be randomly distributed across the 8 non- Phragmites 

vegetation classes of the unsupervised classification and would serve as the sample points 

for those classes as well. 

Quantitative assessment of the two classifications required that a probabilistic 

sampling scheme be used to locate accuracy assessment sample points.  Because 

Phragmites only occurs in a small proportion of the study area, a simple random 

sampling scheme would almost certainly under-sample Phragmites.  This made it 

necessary to use some form of stratified sampling that would place an adequate number 

of sample points in areas of actual Phragmites and in areas of predicted Phragmites. 

Phragmites culms from one season’s growth generally remain standing into the 

next growing season and in some cases may persist for as long as 4 years (Windham, 

2001).  This allowed field work for accuracy assessment to be carried out the following 

spring.  Because of this it was possible to use the classified images as the basis for strata 

in the sampling scheme. 

Allocating sample points on the basis of the classified image presents some 

statistical problems.  For example, if the classification is quite inaccurate, the sample 

points-per-class may measure the errors of commission (predicted material of interest 
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which is not actually the material of interest) but do not measure the errors of omission 

(the proportion of the material of interest that went unpredicted by the classification).  

This arises from the fact that if the samples are not simply random within the study area 

and if the allocation of sample points is based on a largely errant classification, then it is 

not possible to infer the actual distribution of the classes within the study area.  Without 

knowledge of the actual land cover proportions it is then not possible to determine the 

errors of omission, (how much of the target material was missed) or how much better 

than random the classification is. 

All of these shortcomings were balanced against the need to design a sampling 

scheme which would provide information about the Phragmites class and still be within 

the resources of this study.  In the end a scheme based on what Stehman and Czaplewski 

(1998) describe as two-stage cluster sampling was used.  In this type of scheme “primary 

sampling units” or clusters are randomly selected and then further selection of secondary 

sampling units is made within those larger units (Edwards et al., 1998). 

A vector layer of the unsupervised classification was created in ArcGis 8.3.  The 

area of the Water1 (open water) and cloud classes were removed from the layer.  This did 

not completely remove cloud compromised pixels from the layer so a mask was created 

that eliminated the cloud affected areas from selection for accuracy assessment.  Within 

the remaining area of the layer, 12 random points were selected by using an add-on 

extension (Hawth’s Analysis Tools, 2002) in ArcGis.  Around these twelve points 11-

pixel by 11-pixel primary sampling units were created.  For points near the edge of the 

study area or near the excluded cloud and open water areas, adjustments were made so 
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that each primary sampling unit included the same area and the same number of pixels 

(figure 8).  The total area of these 12 windows was the sampling frame. 

 

 
Figure 8: Secondary sampling units were located by 12 points randomly selected within the study 
area. 
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Sixty-seven of the 1452 pixels within the sampling frame were classified as 

Phragmites in the unsupervised classification.  Approximately 50 of these would need to 

be verified by field collected ground truth for accuracy assessment.  To randomly reduce 

the 67 pixels to 50 pixels, 16 points were randomly selected within the area of the 67 

pixels.  The 16 pixels selected by these points were eliminated from the original 67 

pixels.  When more than one point fell in a pixel, the nearest pixel where no points fell 

was selected for elimination.  This left 51 Phragmites pixels for accuracy assessment 

field data collection.   

In the target detection routine classification, only 35 of the “Phragmites” class 

pixels fell within the 1452 pixels of the primary sampling units.  To bring the number of 

accuracy assessment field data collection points to 50 for the target detection 

classification, the sampling frame was expanded to include pixels within 60 m (two 

pixels) of the primary sampling unit boundaries.  This produced 50 pixels in the 

“Phragmites” class of the target detection classification to be used as accuracy 

assessment sample points.  

The 50 accuracy points for the non- Phragmites classes of both classifications 

were chosen by random selection from all of the area within the primary sampling units 

that was not classified as Phragmites in the unsupervised classification.  At least two 

significant compromises arise from this shortcut.  First, 2.75 percent of the sampling 

frame, concentrated in areas with a high likelihood of having Phragmites, was excluded 

from the target detection routine classification’s “not Phragmites” class point selection.  

Second, this relied on chance to allocate sample points among the 8 non-Phragmites 
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classes of the unsupervised classification.  While some classes were clearly 

underrepresented in this sample, the distribution did generally follow the distribution of 

the classification. 

These compromises were a trade off for having the same 50 “not Phragmites” 

points serve the accuracy check of both classifications.  This and the overlap of points in 

the Phragmites classes of both classifications, allowed 200 points (50 Phragmites and 50 

non- Phragmites for each classification) to be compressed into only 131 actual field 

collection sites.  This was judged to be close to the maximum number of sites that could 

be collected by the three person sampling team in the three days available for field work. 
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CHAPTER 6: RESULTS 

6-1: Target Detection 

 The target detection approach produced the best map of monodominant stands of 

Phragmites (appendix A).  The overall accuracy of the target detection classification was 

68.3 percent (table 3).  Producer’s accuracy for the “Phragmites” class was 91 percent 

with 21 of the 23 ground truth samples dominated by Phragmites having been predicted.  

For the “not-Phragmites” class, 48 of the 78 Phragmites samples were correctly 

predicted for a producer’s accuracy of 62 percent.  For the “Phragmites” class, errors of 

commission were higher.  Twenty-one of the 51 predicted Phragmites samples were 

actually Phragmites—a user’s accuracy of 41 percent.  However, for the “not-

Phragmites” class, the target detection classification correctly predicted 48 of the 50 

samples—a user’s accuracy of 96 percent.  Much of the Phragmites mapped by the target 

detection classification occurred on the newly exposed soil and associated shallow water 

created by lower water levels (figure 9). 

Table 3: Error matrix for the target detection classification. 

  Reference Classification 

  Phragmites 
Not 
Phragmites 

Target 
Detection 

totals 
User's 

Accuracy 

Phragmites 21 30 51 41% 
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Not 
Phragmites 2 48 50 96% 

  
Reference 
total 23 78 101   

  
Producer's 
Accuracy 91% 62%   

Overall 
Accuracy 

68.3% 
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Figure 9: The majority of Phragmites was mapped on the newly exposed mudflat and the associated 
shallows created by the lowered water levels. 
 

An error matrix distributing the target detection classification’s errors across all of 

the reference data classes shows the types of land cover where the errors occurred (table 

4).  The largest category of errors (n = 7) in the target detection classification was of 

samples predicted to be Phragmites, but found to be “meadow.”  Six of these 7 errors 

resulted from a single training sample, Dp1n1e1.  This training sample was taken from a 

typically long narrow stand of Phragmites in a drier location, atypical of the majority of 

training samples.  It was bounded by mix of vegetation on the east side that included 

forbs (thistles and goldenrod) and by an area with some exposed wet soil on the west 

edge which appeared to have been driven on during the 2004 growing season.  
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Table 4: Error matrix for the target detection classification over all reference data classes. 
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Not 
Phragmites 4 5 2 12 9   2 10 3 3 50 96.0%
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Classification 
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Producer's 
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%
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 Overall 
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Three classes which typically occur in the same context as Phragmites and are 

often intermixed—“mixed emergent,” “Typha,” and “water2”—account for much of the 

remaining error.  There were 5 errors of commission associated with each of these classes 

(tables 4 and 5).  Four of the 5 mixed-emergent ground truth samples which had been 

misclassified as “Phragmites” were found to contain some Phragmites in the field, but it 

was not the dominant cover type.  Three of these 5 samples were mixed pixels containing 

significant proportions of more than three cover type classes.  Two of the sample units 

had open water and one other had approximately 4 cm of standing water. 

Table 5: Accuracy sample points for errors in target detection classification 

R
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er
en
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P
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 ID

 

Sample Point Description 

ForestC G02 
Tree farm, tall pines with very little understory vegetation, small area 
of short (<5M) deciduous 

ForestC H04 
Tree farm, tall pines with very little understory vegetation, somewhat 
open canopy 

ForestD D01 
Quite mixed pixel at the end of line of trees, also area of grasses, 
forbs, emergent & shrubs and some open water 

ForestD D14 
Deciduous canopy, semi open, shrub understory sparse, river at 
edge of pixel 
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Meadow D04 
Mostly mixed grasses/meadow, transition as water's edge includes 
some Phragmites, open water small portion of sample unit 

Meadow D07 
Dominated by Calamagrostis, some Typha no standing water, Typha 
litter 

Meadow D09 
Predominantly grasses, meadow, with some Typha mixed in a the 
center of the sampling unit, soggy ground 

Meadow D10 
Equally divided between grasses with a few goldenrod and Typha, 
no standing water or bare soil. 

Meadow D12 
More than 1/2 grasses, Typha area and mixed emergant areas make 
up rest of pixel 

Meadow E02 
Grassy meadow mix, plowed land at edge, trees, and some sparse 
Phragmites,  originally called "other" 

Meadow E06 
Predominantly grasses with isolated areas of Typha, Phragmites, 
and corn, soggy throughout. 

MixedEm C25 
Center of pixel scirpus, Typha, and sedges. / Phragmites to the 
north, sparse phrag to the southeast, sparse Phragmites to the sw 

MixedEm D03 
Few Phragmites, Typha, sedges, mixed emergent, about 1/2 open 
water 

MixedEm D19 
Mixed emergent with only edges of open water on one side and 
shrubs/trees on the other 

MixedEm J04 Mixed emergent with a sparse mix of Phragmites to the northwest 

MixedEm J06 
Mixed emergent with a lot of exposed soil 3 or 4 cm of water, sparse 
Phragmites shoots and litter from last year 

other G07 
1/3 road & gravelly sholder, 1/3 ditch with some water, 1/3 shrubs at 
edge of trees, shadows from trees 

Scrub D15 
mixed pixel with meadow with shrubs at center, water at north edge 
and trees at edges east and west 

Scrub D17 
Sparse Phragmites in north third, shrubs in center and trees to the 
south, water at north edge 

Scrub D18 shrubs, water at very north edge  

Typha C15 
Typha in standing water at edge of shore, lots of severed Typha, 
data sheet shows Phragmites to north, south and east 

Typha K08 
Very mixed pixel, Typha dominant in at least the center 1/2 of the 
pixel, dense Phragmites to the west, open water to east 

Typha K13 
Typha dominant in center of pixel some open water the east, an area 
of Phragmites to the north center of the pixel 

Typha K14 
Typha dominant, open water to the northeast corner of pixel, 
Phragmites to the northwest, probably out of the pixel 

Typha L14 Typha and open water, standing water 30 cm 

Water2 C06 
Typha in standing water at edge of shore, lots of severed typha, data 
sheet and digital photos show Phragmites to the west 

Water2 C22 
About 1/3 of the pixel is Phragmites in standing water, about 1/2 
open water, remainder is Typha 

Water2 L01 Open water in the middle of the Pensaukee river. 
Water2 L06 Open water in the middle of the Pensaukee river. 
Water2 L10 Open water in the middle of the Pensaukee river. 
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Of the 5 samples predicted to be “Phragmites” which were actually “Typha,” 4 

did contain some Phragmites.  None of these sample sites was dominated by any single 

vegetation or land cover class.  All five of these sample units contained some open water. 

Three of the 5 sampling units misclassified as “Phragmites” but found to be 

“water2” were in the open water of the Pensaukee River mouth (see discussion).  The 

other two samples contained some “Phragmites.”  All five sample units had some open 

water or standing water.     

6-2: Unsupervised Classification 

For the unsupervised classification, two-hundred spectral classes were defined 

using the ISODATA algorithm.  The clusters with the largest membership tended to be 

outside the wetland areas and were predominantly assigned to the “forest,” “meadow,” 

“scrub” and “water1” classes.  The clusters in the wetland areas tended to have smaller 

membership and were consequently more numerous.  Class assignment for the larger 

membership clusters (“forestD” and “meadow”) was straightforward.  There was greater 

ambiguity among the smaller more numerous clusters located in the wetland areas.  

Spectral classes that corresponded to Phragmites sample points generally did not overlap 

multiple areas of known Phragmites.  This was consistent with the visual comparison of 

Phragmites training samples’ spectra (figure 14) which shows greater variability within 

the Phragmites samples as a group than between that group and Typha. 

 While some of the woody vegetation classes (forestD, forestC and scrub) include 

areas of forested wetland, the objective of this study was to distinguish Phragmites.  With 

only 3 of 51 predicted Phragmites sites falling in areas that were found to be “scrub” and 
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none in either of the forest classes, these three classes were merged into a single “woody 

vegetation” class for the thematic map of the unsupervised classification (appendix B) as 

well as in the error matrix.   

Table 6: Error matrix for unsupervised classification. 
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The error matrix (table 6) shows that out of the 21 ground-truth points that were 

found to be “Phragmites,” 19 were classified as Phragmites by the unsupervised 

classification—a producer’s accuracy of 90.5 percent.  This translates to very few errors 

of omission in the “Phragmites” class.  However, errors of commission were high for the 

unsupervised classification Phragmites class.  Of 51 points selected from the 

“Phragmites” class, only 19 were shown to meet the “Phragmites” class criteria by the 

ground-truth data—a user’s accuracy of only 37.3 percent. 

 Eight of the pixels classified as “Phragmites” were found in the field to be “mixed 

emergent.”  Six of these 8 were verified to contain some Phragmites and the other two 
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had been mown, making it difficult to determine dominant land cover at the time of 

image collection (table 7).    

Eight of the sample points classified as Phragmites were found in the field to be 

Typha (table 7).  Of these, 5 contained some Phragmites.  Six of these sample points also 

included either standing or open water. 

Table 7: Accuracy sample points for errors in unsupervised classification. 
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Sample Point Description 

Meadow D04 
2/3 mixed Calamagrostis, Phalaris, very sparse Typha; remaining 
1/3 grasses, goldenrod, Phragmites & open water 

MixedEm C01 
mostly mixed emergent, western 3/5 mown; eastern edge stands of 
Spartina & Phragmites open water 

MixedEm C20 
mixed emergents including Phragmites, Typha, and sedges; Large 
stand of Phragmites at the eastern edge 

MixedEm C26 
southern 1/2 is a backyard with large broadleaf trees; northern 1/2 is 
mown emergents 

MixedEm D03 Few Phragmites Typha, sedges, mixed emergent, 1/2 open water 

MixedEm D19 
Mixed emergent with only edges of open water on one side and 
shrubs/trees on the other 

MixedEm J07 
mixed emergent vegetation including Scirpus, Carex and very 
sparse Phragmites 

MixedEm J08 
Mixed emergent including Scirpus, other sedges, also Salix and 
some very sparse Phragmites 

MixedEm L17 
Mixed emergent including Scirpus, sparse Typha and Salix, stand of 
Phragmites at north edge 

other G06 
1/3 road & gravelly sholder, 1/3 ditch with some water, 1/3 shrubs at 
edge of trees, shadows from trees 

other G07 
1/3 road & gravelly sholder, 1/3 ditch with some water, 1/3 shrubs at 
edge of trees, shadows from trees 

Scrub D15 
Mixed pixel with meadow with shrubs at center, water at north edge 
and trees at edges east and west 

Scrub D17 
Sparse Phragmites in north third, shrubs in center and trees to the 
south, water at north edge 

Scrub D18 Shrubs, water at very north edge  

Typha C02 
Center (1/2) of pixel Typha in 30+cm of water, med density 
Phragmites in west & sw 1/3 of pixel; open water in east fraction 
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Typha C08 Typha in standing water, sheared off stems, nw 1/3 open water 

Typha K07 
2/3 Typha in standing water, far right edge open water, Phragmites 
to nw just less than 1/4 of pixel, to west and south edges of pixel  

Typha K08 
Very mixed pixel, Typha dominant in at least the center 1/2 of the 
pixel, dense Phragmites to the west, open water to east 

Typha K12 Typha, open water to the ne edge 

Typha K13 
Typha dominant in center of pixel some open water the east, an 
area of Phragmites to the north center of the pixel 

Typha L13 Typha and Typha litter, shallow standing water 10cm+/- 
Typha L14 Typha in shallow standing water, Phragmites at extreme sw edge 

Water2 C06 
Center 1/5 of pixel Typha in standing water, mostly open water, 
moderate to low density Phragmites to the west edge 

Water2 D06 
Western 3/5 of pixel shallow open water, narrow band of Scirpus at 
waters edge and 1/5 of pixel grasses  

Water2 L01 Open water   
Water2 L02 Open water 
Water2 L03 Open water with sliver of bank (Salix, trees, shrubs, some rushes) 
Water2 L04 open water with 1/5 pixel bank (Salix, sparse Phragmites) 
Water2 L05 1/2 open water, 1/2 someone’s yard and house, road at so edge. 
Water2 L06 Open water in the mouth of the Pensaukee river 
Water2 L07 Open water with tree and rocks in nw corner 
Water2 L08 Open water 

 
 Ten of the 51 ground truth points predicted to be Phragmites were found to be 

“Water2” (tables 6 and 7).  This was the most common error in the unsupervised 

classification.  Eight of these 10 errors were in the mouth of the Pensaukee River, in 

shallow water and within approximately 30 m of the bank (see discussion).  Four of these 

eight sample points contained only open water (L1, L2, L6 and L8; table 7), while the 

remaining four sample points contained as much as one third land.  The other two sample 

points where predicted Phragmites was found to be “Water2” were both mixed pixels 

containing open water and vegetation which included but was not limited to Phragmites. 

 The Typha class was the least successful from both the producer’s and user’s 

accuracy perspectives.  Of 11 ground truth samples that were found to be Typha, none 
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were predicted by the unsupervised classification.  The 5 pixels predicted to be Typha all 

turned out to be other classes: “mixed emergent,” “meadow,” “Phragmites” and 

“water2.”   

6-3: Spectral Separabilty of Typha and Phragmites Training Samples 

 Visual comparison of spectra from pixels selected as Phragmites training data 

showed considerable variation among samples (figure 10).  This variation is of particular 

importance in the red edge portion of the spectrum (figure 11) between the red absorption 

minimum (approximately 670 nm) and the near infrared maximum (between 700 and 800 

nm) (Lillesand and Kiefer, 2000).  This portion of the spectrum is of primary importance 

in vegetation studies (Datt et al., 2003; Schmidt and Skidmore, 2003).   

Phragmites Spectra Variation
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Figure 10: Variation among Phragmites training spectra across all Hyperion bands. 
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Phragmites Spectra  -  Red Edge Comparison
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Figure 11: Variation among Phragmites training spectra across red and infrared bands. 
 

Mean Spectra from Phagmites Training Samples and Known 
Typha Spectra
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Figure 12: Comparison of mean Phragmites spectra to mean Typha spectra across all Hyperion 
bands. 
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7 Phragmites training samples (red) vs 7 Typha training samples (black)
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Figure 13: Comparsion of 7 Phragmites training samples (red) vs. 7 Typha training samples (black). 

 
 Simple visual comparison of the mean spectra of the Phragmites training samples 

with the mean spectra of the Typha training samples shows that they are quite similar 

(figure 12).  More importantly, display of several examples of Typha and Phragmites 

training samples together shows that the variation in each set of spectra overlaps much of 

the other set (figure 13).  The majority variation in the training sample spectra within 

these two classes was assumed to result from the various proportions of land cover 

contributing reflectance to the training pixels, not from variation in the target vegetation 

itself. 
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6-4: Change since the Wisconsin Wetlands Inventory 

Water levels in Green Bay rise and fall following the historic pattern of broad 

water level fluctuations in the Great Lakes over periods of 10 to 30 years (NOAA, 2005).  

The mean water level in Lake Michigan during September of 2004 when the Hyperion 

image was acquired was 176.29 m (IGLD, 1985) up 35 cm from a 39 year low of 175.94 

m the September before (USACE, 2005).   Only 18 years earlier Lake Michigan had been 

at 177.38 m, higher than any year between 1918 and 2004.  Comparison of aerial 

photographs from April of 1998 when water levels were at 176.95 with the Hyperion 

image taken in September 2004 when water levels were at 176.29, shows the effect that 

changes in water level have on the shoreline (figure 14).  A drop of 37.5 cm has shifted 

the shoreline between 75 m and 100 m lakeward.  

 

Figure 14:  Water levels in 2004 were approximately 37.5 cm. below levels in 1998, (NOAA, 2005) 
and are reflected in the shoreline change between the 1998 Ortho Quad Photos and the 2004 
Hyperion image. 
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Historically, when the water level and shoreline have changed so have extent and location 

of wetlands along the coastal margins of Green Bay (Hallett et al., 1977).  The lakebed 

exposed by the relatively low water levels of September of 2004 has been colonized by a 

variety of emergent wetland vegetation.  To map this new emergent wetland area, classes 

in the unsupervised classification were generalized to combine the two forest classes 

(forestC and forestD) into a single “Forest” class, and the three emergent vegetation 

classes (Typha, mixed emergent, and Phragmites) into a single “Emergent” class.  Other 

classes remained the same (water, impervious, scrub and meadow).  Deep water, (water1) 

and cloud areas were recoded to “unclassified” and are not displayed in the map.  Clouds 

and deep water were also masked for selection of accuracy assessment samples and so are 

not a part of the error matrix.  The “Water2” class is shallow water and was retained to 

prevent masking out areas of emergent vegetation in standing water.  The resulting map 

(appendix C) shows that the emergent wetlands in the study area have expanded lakeward 

relative to the 1978 and 1979 aerial photos used to create the Wisconsin Wetlands 

Inventory (figure 15).   

Direct comparison of the areal extent of the emergent wetlands is not possible 

because of differences in definition of “emergent” by the two maps: the Wisconsin 

Wetlands Inventory included wetland meadow vegetation in its “emergent” class 

(Johnston and Meysembourg 2002), whereas this study included it in “meadow,” a class 

which contained both upland and wetland meadows. The lakeward expansion of 

emergents is real, however. These areas of emergent vegetation that have developed tens 

of meters lakeward of the 1978 shoreline are new emergent wetland not accounted for in 
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the original release of the WWI.  This illustrates the ephemeral nature of these wetlands 

and the value that periodically updated remote sensing provides to their study and 

management.   

 
Figure 15: The merged emergent wetland classes from the 2004 unsupervised classification extend 
tens of meters lakeward, beyond the WWI boundary.  
 

Producer’s accuracy for the mixed emergent class was high at 83.7 percent with 

most of the confusion occurring between the “mixed emergent” and “water2” classes 

(table 8).    Once again the concentration of errors at the mouth of the Pensaukee River 

accounts for a large proportion of the error—8 of the 20 errors of commission.  With the 

inclusion of these 8 points the user’s accuracy for the merged “emergent” class was 67.2 
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percent.  Excluding these 8 points the user’s accuracy would be 41 points correctly 

predicted of 53 emergent wetland accuracy points or 77 percent user’s accuracy.  

Table 8: Error matrix comparing unsupervised classification with reference classification using 
merged emergent and forest classes. 
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CHAPTER 7: DISCUSSION AND CONCLUSIONS  

7-1: Was Phragmites successfully predicted? 

 The two previous attempts at distinguishing Phragmites with hyperspectral 

remote sensing that were found in the literature used airborne sensors with spatial 

resolutions of 4.5 m (Bachmann et al., 2002) and 5m (Lopez et al., 2004).  Hyperion’s 30 

m x 30 m pixels capture approximately 36 times as much area as the data in either of 

these studies.  However, even at 4.5 m resolution, Bachmann et al. (2002) found that 

Phragmites’ tendency to form long linear stands that were in some instances only one 

pixel in width was problematic.  Using several image analysis algorithms and approaches, 

accuracy for their Phragmites class ranged from approximately 27 percent to a high of 68 

percent (Bachman et al., 2002).  The stands of Phragmites at the Green Bay study site 

were similarly narrow and, with the coarser spatial resolution of Hyperion, likely posed 

the greatest obstacle to accuracy in this investigation.   

It was clear from early in the investigation that the size of the features of interest 

(dense stands of Phragmites) only rarely reached the size of the Hyperion sensor’s spatial 

resolution—30 m x 30 m—within the study area.  With very few stands of Phragmites 

reaching the spatial resolution of the sensor, training samples drawn from within the 

image inevitably included mixed pixels.  Logically, if the spectra from these mixed pixels 

were to be used as training data for supervised classification or target detection, the 

optimum result would be identification of similarly mixed pixels.   

 The typical occurrence of Phragmites in the study area was a linear stand parallel 

to the shoreline that seldom exceeded 20 m in the dimension perpendicular to the 
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shoreline.  Most stands were surrounded by and often mixed with other wetland species, 

such as Typha, Salix, Scirpus, and Carex.  In most cases some part of the stand had 

standing water in the understory and often there was open water adjacent to the stand.  

The training samples were made up of varying combinations of these land cover 

components.   

Considering those obstacles the 68.3 percent overall accuracy and 41.2 percent 

user’s accuracy of the target detection classification are a reasonable success.  

Approximately 1 percent of the study area was classified as Phragmites by the target 

detection routine.  If this is within an order of magnitude of being correct the actual 

proportion of the study area that met the Phragmites class criteria was between 0.1 

percent and 10 percent.  Assuming this, the 68 percent overall accuracy and 41 percent 

users accuracy for the Phragmites class detection, suggest that the Phragmites training 

data could identify pixels that were considerably more probable than random to include 

dense stands of Phragmites.  

No conclusive explanation was found for the concentration of error at the mouth 

of the Pensaukee River.  However, the close proximity of 8 identical errors and all 8 of 

these points being similarly situated in shallow water near the riverbank (figure 16) 

suggest two possible explanations.  The first possibility is misregistration, of the image.  

Comparison of the Hyperion image with aerial photographs and the orthorectified ETM+ 

panchromatic layer used for georeferencing show that the Hyperion image may be shifted 

approximately half a pixel or fifteen meters to the south, relative to the ETM+ image.  

The presence one of the errors on the south bank of the river (L05) is some evidence 
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against this explanation—this sample would be made more anomalous by adjusting the 

Hyperion image half a pixel to the north.  However, this is a single sample point 

compared to seven errors near the north bank; therefore, georeferencing error remains a 

likely contributor to the 8 misclassified samples.      

 
Figure 16:  8 points classified as Phragmites were shown to be open shallow water in the mouth of the 
Pensaukee River. 
 

A second possible contributor to these errors may have been the delay between 

image acquisition and collection of accuracy data.  For the accuracy assessment of the 

two classifications it was assumed that the persistent nature of Phragmites would allow 

accuracy data to be collected in the spring, 8 months after image acquisition.  This delay 

introduced some uncertainty about whether vegetation was the same in May as it had 

been in September, when the image was acquired.  Specifically, the 8 sample points 
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classified as Phragmites that were found to be open water in the mouth of the Pensaukee 

River suggest the possibility that ice or heavy spring runoff may have scoured stands of 

Phragmites that were detected in the Fall image.  There were also Typha stems sheared 

off 15 to 30 cm above the spring water level (sample points C02, C06, C08, C10, C13, 

C15, C18, and C22), apparently by ice and wave action over the winter.  In this case the 

remaining stems provide some evidence of the previous fall’s vegetation.  They also raise 

the possibility that other emergent vegetation may have been lost over the winter, 

affecting the accuracy of the reference data.   

7-2: Is Phragmites spectrally distinct from other wetland species? 

 By treating each of the training samples in the target detection classification as a 

separate material of interest, (figure 17) the final classification is, in theory, a composite 

of 13 maps of different combinations of Phragmites and other land cover.  Similarly, the 

unsupervised classification’s 200 spectrally distinct clusters, in theory, included a subset 

of clusters composed of various combinations Phragmites and other land cover.  The 

clusters that overlapped known areas of Phragmites were assumed to belong to that 

subset and were assigned to the “Phragmites” class.   
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Figure 17: This simplified representation of spectral clusters in data space illustrates that the 
variation in the mixed Phragmites training samples collectively may have prevented them being 
spectrally distinct.  Using each mixed sample point separately was intended to avoid this overlap. 
 
 Realizing this, it is important to remember that the accuracy numbers are for 

Phragmites-plus-context rather than for just Phragmites.  Furthermore, by treating each 

sample as an individual material of interest and utilizing ancillary data, the accuracy 

assessment is of the entire classification process rather than the spectral detection of 

Phragmites in Hyperion data alone.  This may not be an area of direct concern from the 

standpoint of operational use if the process predicts the presence of Phragmites.  

However, it means that the accuracy numbers do not necessarily indicate that Phragmites 

itself is spectrally distinct from any of the other wetland species in the error matrix.   

In reality, it is possible that other combinations of water, soil, litter and vegetation with 

similar reflectance characteristics were indistinguishable from the reflectance of water, 

soil, litter and Phragmites.  This would likely become more of a problem as the fraction 
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the sampling unit covered by Phragmites decreased and the fraction of reflectance 

coming from soil, water and litter increased.  Again, it is important to keep in mind that 

the mixed pixels used for training data limit conclusions about the spectral distinctness of 

Phragmites itself within the Hyperion image.  It is quite possible that some of the positive 

relationship between the mapped Phragmites locations and the reference Phragmites 

locations is a product of the spectral similarity of elements correlated with Phragmites 

occurrence rather than Phragmites itself; for example shallow water, bare soil and 

shadows.  

7-3: Change Since the Wisconsin Wetlands Inventory  

 The classifications scheme used in this study was not the same as used for the 

WWI.  The most problematic difference, for the purpose of comparing the emergent 

wetlands areal extent within the study area, was the merging of wetland and upland 

meadow into a single class in this study where they were distinguished in the WWI.  This 

was done because the two were found to be spectrally indistinguishable in the image.  

Because of this the emergent wetlands classes of this study should underestimate the 

extent of emergent wetlands by some fraction of the meadow class.  In spite of this, the 

total area of emergent wetland in this study’s wetland classes is 58.6 hectares more than 

in the WWI, (551 h compared to 492 h).  While this gives no precise measure of the 

increase in emergent wetlands, it confirms the visually apparent increase in emergent 

wetlands in the study area and illustrates the constant change in the ecosystem of Great 

Lakes coastal wetlands. 
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7-4: Hyperion data 

 The narrow stands of Phragmites found in the study area provided few if any pure 

pixels for training data at the 30 m resolution of the sensor.  The design of Hyperion 

trades finer spatial resolution for finer spectral resolution, and in doing so likely provides 

as much or more information for species level remote sensing applications.  However, 

accessing this information requires more sophisticated sub-pixel classification techniques 

and a higher level of data processing than this study used.  Alternatively, this study’s 

approach likely would have produced better results with a spatial resolution of 10 m or 15 

m, which would have allowed pure training pixels to be used.  The best trade off between 

spatial and spectral resolution seems likely to be different for different applications and 

different image analysis techniques.  If Hyperion type sensors are to serve a variety of 

applications, their design will require a compromise in balance of spatial and spectral 

resolution ideal to any one application.  In addition, design must anticipate the 

development of techniques and technologies that would change that ideal balance for 

different applications.  Nevertheless, in the case of this study it seems that sacrificing 

some spectral resolution for greater spatial resolution would have been beneficial. 

 Solutions to the problems of signal to noise, vertical striping and “spectral smile” 

would seem to be key to application oriented users on two levels.  The information that 

can be extracted from the data and the confidence in that information are naturally of 

primary importance to users applying the data to real world problems.  In addition, many 

users may be unwilling to approach data that requires excessive preprocessing, for which 

there are not yet clearly defined techniques or specifically designed software applications.    



 

77

7-5: Future Research 

 The most limiting factor in successfully distinguishing monodominant Phragmites 

seems to have been the spatial resolution of the sensor relative to the size and shape of 

the stands of Phragmites in the study area.  Two possibilities to consider in further 

attempts to use Hyperion to distinguish Phragmites: 1) The use of sub-pixel algorithms 

and techniques in the image analysis; and 2) Image acquisitions that include one or more 

Phragmites stands that are several pixels in size in both dimensions.   

 Use of subpixel algorithms such as the MTMF have been successfully used to 

map vegetation as a percentage of land cover per pixel (Williams and Hunt, 2002).  

Williams and Hunt used the MTMF with AVIRIS data flown at high altitude which gave 

it similar spatial resolution (20 m x 20 m) to Hyperion (30 m x 30 m).  The MTMF 

algorithm has the further advantage of not requiring a priori knowledge of spectra for 

other materials within the image (Boardman et at., 1995). 

Site location that includes larger Phragmites stands from which to draw training 

samples may also improve results.  Bachman et al. (2002) state that accuracy and 

specificity of supervised classification was highly dependant on the size of training 

samples and the accuracy of georeferencing.  With 5 m resolution and image derived 

spectra, Lopez et al., (2004) achieved 91 percent accuracy.  The success of Lopez et al. 

(2004), using relatively large training samples and essentially the same spatial resolution, 

reinforces Bachman et al.’s conclusions about sample size.   

Stands of Phragmites that significantly exceed the 30 m x 30 m resolution of 

Hyperion were observed in at least two locations in the Green Bay area; the extreme 
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southwest corner of the bay and at the end of Little Tail Point.  Location of the Hyperion 

image was based on a center point of the study area given to EROS for image acquisition.  

In retrospect, it would have been a worthwhile risk to have located that point to the 

southwest of the study area, moving the study area to the right edge of the image, but 

including these known large stands of Phragmites.  Future studies would benefit from 

making inclusion of such stands within the study area a priority.   

7-6: Final Words 

 Airborne hyperspectral remote sensing has the technical advantage for species 

level studies with its finer spatial resolution and its superior signal to noise ratio.  

However, in most cases, its high cost will prevent it from being used for ongoing 

monitoring and study of wetlands.  The lower cost per image acquisition of space 

platform sensors could make them much more viable for ongoing monitoring programs.  

Hyperion is the first generation of space based hyperspectral remote sensing.  The modest 

success of this study can almost certainly be improved on as sensors improve and 

experience with hyperspectral remote sensing of wetlands grows.  While species level 

remote sensing remains at the edge of remote sensing capability, its potential value to 

ecological studies makes further research imperative.  The internally consistent, broad-

scale data, which only remote sensing can provide will be essential to dealing with the 

global environmental changes taking place.   
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Appendix D- 1: Accuracy assessment points  

Reference 
Classification 

Point 
ID 

Unsupervised 
Classification 

Target 
Detection 

Classification Sample Point Notes 
ForestD A01 Scrub 

not-
Phragmites 

1/4 grass and stumps; 3/4 open deciduous w/ 
understory of grasses & shorter trees 

ForestD A02 ForestD 
not-
Phragmites 

Mown grass on the eastern 1/5; scrub and trees 
mixed for the remainder; picnic shelter at south east 
corner, no standing water or exposed soil 

Phragmites A03 x Phragmites 

Open water for southern 1/3; standing Phragmites to 
the north; Phragmites laying over in majority of pixel, 
maybe storm, ice or waves?  Would assume dense & 
standing in Fall. 

Phragmites A04 x Phragmites 
Phragmites throughout; 2 to 3 m tall; 15 cm standing 
water 

Phargmites A05 Phrag x 

Phragmites moderate density with some shrubs and 
other; an area of meadow on the north edge; 5 cm of 
standing water 

Phragmites A06 Phrag x 

Open water on the south edge; Phragmites dominates 
with some typha mixed in, especially to the east 1/4; 
40 cm standing water 

Phragmites A07 Phrag x Phragmites; fairly dense, shallow standing water 

MixedEm A08 MixedE 
not-
Phragmites 

Mixed emergent veg including scirpus, moss, shrubs 
and phragmites; Phragmites dominant on the south 
1/4 

Phragmites A09 Typha 
not-
Phragmites 

Phragmites; open water in south-bay; open water on 
east edge-inlet; typha mixed in south 1/4 of pixel  

ForestD B01 ForestD 
not-
Phragmites 

Forest based on air photos and observation from the 
road - area was posted 

ForestD B02 Scrub 
not-
Phragmites 

Forest based on air photos and observation from the 
road - area was posted 

MixedEm C01 Phrag x 
mostly mixed emergent, western 3/5 mown; eastern 
edge stands of spartina & Phragmites open water 

Typha C02 Phrag x 

Center (1/2) of pixel Typha in 30+cm of water, med 
density phragmites in west&sw 1/3 of pixel; open 
water in east fraction 

Phragmites C03 Phrag x 

Phragmite through the center 1/2 of the pixel in 15 cm 
of standing water; mixed emergent to the west 1/5 
and some open water on the east edge; sheared 
vegetation at the waters edge - probably typha 

MixedEm C04 MixedE 
not-
Phragmites 

Mixed emergent with some phragmites; some 
standing water in the northeast 1/5 

Phragmites C05 Phrag Phragmites 

Phragmites to the north, west and south; center of 
pixel has 50 cm of standing water and typha, water to 
the east with sheared typha 

Water2 C06 Phrag Phragmites 

center 1/5 of pixel typha in standing water, lots of 
severed typha, mostly open water, moderate to low 
density Phragmites to the west edge 

Phragmites C07 Phrag Phragmites 

Phragmites through the center in 30 cm standing 
water with mixedEm to the west and open water to 
the east;  

Typha C08 Phrag x 
Typha in standing water, lot of sheared off stems, nw 
1/3 of pixel open water 
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Appendix D- 2 
 

Reference 
Classification 

Point 
ID 

Unsupervised 
Classification 

Target 
Detection 

Classification Sample Point Notes 

Phragmites C09 x Phragmites 

Phragmites to the south; grades into mixedEm to the 
west and north; denser stand to the extreme east 
edge 

Phragmites C10 Phrag x 

Phragmites throughout but grades into mixed 
emergent from just west of pixel center to west edge; 
10 cm standing water 

Phragmites C11 Phrag Phragmites 

Phragmites moderate density to north west and south, 
some typha mixed in; standing water at the east edge 
and more typha in the mix; some bare soil in the 
southeast corner 

Phragmites C12 Phrag x 

Phragmites throughout but not very dense; some 
mown area; some open water where veg is gone from 
dragging in dock; some bare soil there as well; 
shallow standing water throughout 

Phragmites C13 Phrag x 

Eastern 1/3 sheared typha and open water; 
phargmites throughout the rest; mixed with typha in 
most areas; some phragmites matted and litter;  

Phragmites C14 Phrag Phragmites 

East to west swath about 20 m mown and now has 
quite a bit of standing water; dominant Phragmites 
throughout rest of pixel  

Typha C15 x Phragmites 

typha in standing water at edge of shore, lots of 
severed typha, data sheet shows phragmites to north, 
south and east 

Phragmites C16 Phrag x 
Phragmites throughout dense; very little standing 
water if any 

Phragmites C17 x Phragmites 
Bay in east 1/5 of pixel; Phragmites in 15 cm standing 
water moderate density with some typha and litter 

Phragmites C18 x Phragmites 

Phragmites north, south and west; some typha in 
deeper water to the east; a small area of mixed veg 
just south of center 

Phragmites C19 Phrag Phragmites 

Phragmites grades into mixed emergent to the west; 
water at extreme eastern edge; no standing water in 
most of area 

MixedEm C20 Phrag x 

mixed emergents including Phrag, Typha, and 
sedges; Large stand of Phragmites at the eastern 
edge 

Phragmites C21 x Phragmites 

Phragmites throughout with some typha mixed in the 
east and some small salix in the understory to the 
west 

Water2 C22 x Phragmites 
about 1/3 of the pixel is phragmites in standing water, 
about 1/2 open water, remainder is typha 

Phragmites C23 x Phragmites Dense phragmites throughout, no standing water 

Phragmites C24 x Phragmites 
Phragmites throughout;  density-5; no standing water 
or exposed soil  

MixedEm C25 x Phragmites 

center of pixel scirpus, typha, and sedges. / 
phragmites to the north, sparse phrag to the 
southeast, sparse phrag to the sw 
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Appendix D- 3 
 

Reference 
Classification 

Point 
ID 

Unsupervised 
Classification 

Target 
Detection 

Classification Sample Point Notes 
MixedEm C26 Phrag x 

southern 1/2 is a backyard with large broadleaf trees; 
northern 1/2 is mown emergents 

Impervious C27 Scrub 
not-
Phragmites 

Yard, house, road, trees, mown emergent veg at 
north edge 

Impervious C28 Imperv 
not-
Phragmites 

Yard, house, road, trees, mown emergent veg North 
half 

Scrub C29 Scrub 
not-
Phragmites 

Shrubs and grasses to the west; yard, outbuildings 
and house to the east 

ForestD D01 x Phragmites 

Quite mixed pixel at the end of line of trees, also area 
of grasses, forbs, emergent & shrubs and some open 
water 

Water2 D02 Typha 
not-
Phragmites 

Point in the middle of a shallow inlet about 25m wide;  
vegetation at the edges; some rushes  

MixedEm D03 Phrag Phragmites 
few phragmites, typha, sedges, mixed emergent, 
about 1/2 open water 

Meadow D04 Phrag Phragmites 

2/3 mixed calamagrostis, ?phalaris, very sparse 
typha; remaining 1/3 grasses, goldenrod, Phragmites 
& open water 

MixedEm D05 Meadow 
not-
Phragmites 

Very mixed pixel; marginal call to mixed em; includes 
shallow open water to the east; meadow to the west 
and a mixed emergent band in the middle-each about 
equal proportions 

Water2 D06 Phrag x 
western 3/5 of pixel shallow open water, narrow band 
of scirpus at waters edge and 1/5 of pixel grasses  

Meadow D07 x Phragmites 
dominated by calamagrostis, some typha no standing 
water, typha litter 

Meadow D08 Meadow 
not-
Phragmites 

North half grasses, south half includes some typha; 
no standing water or exposed soil 

Meadow D09 x Phragmites 

predominantly grasses, meadow, with some typha 
mixed in a the center of the sampling unit, soggy 
ground 

Meadow D10 x Phragmites 
equally divided between grasses with a few goldenrod 
and typha, no standing water or bare soil 

Typha D11 ForestD 
not-
Phragmites 

Typha except for eastern 1/8 meadow ; soggy 
throughout but no standing water 

Meadow D12 x Phragmites 
more than 1/2 grasses, typha area and mixed 
emergant areas make up rest of pixel 

Typha D13 ForestD 
not-
Phragmites Typha throughout; wet but no standing water;  

ForestD D14 x Phragmites 
Deciduous canopy, semi open, shrub understory 
sparse, river at edge of pixel 

Scrub D15 Phrag Phragmites 
mixed pixel with meadow with shrubs at center, water 
at north edge and trees at edges east and west 

Water2  D16 Water2 
not-
Phragmites 

center was in water of Oconto river; south third 
emergent veg including salix and phragmites 

Scrub D17 Phrag Phragmites 
Sparse phragmites in north third, shrubs in center and 
trees to the south, water at north edge 
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Appendix D- 4 
 

Reference 
Classification 

Point 
ID 

Unsupervised 
Classification 

Target 
Detection 

Classification Sample Point Notes 
Scrub D18 Phrag Phragmites shrubs, water at very north edge  

MixedEm D19 Phrag Phragmites 
mixed emergent with only edges of open water on 
one side and shrubs/trees on the other 

Meadow E01 Scrub 
not-
Phragmites 

some wild rice, some typha stems; some burned area; 
some sparse phragmites and some Calamagrostis 
and Phalaris; standing water in some areas 

Meadow E02 x Phragmites 
grassy meadow mix, plowed land at edge, trees, and 
some sparse phragmites,  originally called "other" 

Meadow E03 Meadow 
not-
Phragmites 

Calamagrostis, (all dried stems) wet but no standing 
water; a few large trees to the north 

Meadow E04 Meadow 
not-
Phragmites 

Calamagrostis(?), a stand of typha to the north east; 
wet but no standing water 

Meadow E05 Meadow 
not-
Phragmites 

Mixture of Calamagrostis (?) Phalaris and rice grass; 
some typha to the far north and south east; a small 
area of corn to the south west 

Meadow E06 x Phragmites 
predominantly grasses with isolated areas of typha, 
phrag, and corn, soggy throughout 

Meadow E07 Meadow 
not-
Phragmites 

mixed grasses (?Phalaris and Calamagrostis) 
throughout with typha mixed in the east half 

Scrub F01 ForestD 
not-
Phragmites Shrubs throughout; up to 4 m tall; a few trees 

Scrub F02 Scrub 
not-
Phragmites 

Scrub/shrub except for nw corner tussock sedge, 
soggy in the area of the sedges 

Scrub F03 Scrub 
not-
Phragmites 

Scrub with a small area of grasses; shallow standing 
water or soggy throughout 

Meadow F04 Scrub 
not-
Phragmites 

tough call between shrub and meadow; a few big 
trees 

Scrub G01 Scrub 
not-
Phragmites broadleaf shrubs pretty dense with a few taller trees 

ForestC G02 x Phragmites 
Tree farm, tall pines with very little understory 
vegetation, small area of short (<5M) deciduous 

ForestD G03 ForestD 
not-
Phragmites 

deciduous canopy shrubby underbrush; no standing 
water or exposed soil 

ForestC G04 ForestD 
not-
Phragmites 

Conifer tree farm for bottom 3/5 ; mixed forest 
elsewhere 

ForestC G05 ForestD 
not-
Phragmites 

Conifer tree farm for bottom 3/5 ; mixed forest 
elsewhere 

other G06 Phrag x 

1/3 road & gravelly sholder, 1/3 ditch with some 
water, 1/3 shrubs at edge of trees, shadows from 
trees 

other G07 Phrag Phragmites 
1/3 road & gravelly sholder, 1/3 ditch with some 
water, 1/3 shrubs at edge of trees, tree shadows 

Meadow G08 MixedE 
not-
Phragmites 

mown grasses, large yard with a pond conifer tree 
farm to the east 

ForestD H01 ForestD 
not-
Phragmites Deciduous with scrub understory 

Scrub H02 Scrub 
not-
Phragmites tough call between shrub and d forest,  

Scrub H03 MixedE 
not-
Phragmites Scrub and conifer to the north ; otherwise shrubs 

ForestC H04 x Phragmites 
Tree farm, tall pines with very little understory 
vegetation, somewhat open canopy 
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Appendix D- 5 
 

Reference 
Classification 

Point 
ID 

Unsupervised 
Classification 

Target 
Detection 

Classification Sample Point Notes 
Scrub I01 ForestD 

not-
Phragmites 

Salix and dogwood; some standing water, 10 cm 
standing water 

ForestC I02 ForestC 
not-
Phragmites Conifer with fairly open canopy 

Scrub I03 ForestD 
not-
Phragmites scrub mixed with trees  

Meadow I04 Meadow 
not-
Phragmites 

tough call, someone’s large yard with pond; shrubs to 
the east;  

ForestD J01 Scrub 
not-
Phragmites 

Deciduous forest pretty open moss and litter 
undertory with a few shrubs 

Phragmites J02 x Phragmites 
very center mixed emergent; and just to the northwest 
of center grasses; otherwise Phragmites 

Phragmites J03 Phrag Phragmites 
Phragmites, not very dense, soggy to shallow 
standing water 

MixedEm J04 x Phragmites 
mixed emergent with a sparse mix of phragmites to 
the northwest 

MixedEm J05 Meadow 
not-
Phragmites 

Carex stricta, some wetland grasses, some shrubs to 
the south east corner 

MixedEm J06 x Phragmites 

mixed emergent with a lot of exposed soil 3 or 4 cm of 
water, sparse phragmites shoots and litter from last 
year 

MixedEm J07 Phrag x 
mixed emergent vegetation including Scirpus, Carex 
and very sparse Phragmites 

MixedEm J08 Phrag x 
mixed emergent including Scirpus, other sedges, also 
Salix and some very sparse Phragmites 

Meadow J09 Imperv 
not-
Phragmites 

Grasses throughout the center of the pixel with dense 
phragmites stands to the south and west edges,  

Phragmites J10 x Phragmites 
northwest 2/3 phragmites; grades into mixed 
emergent to the southeast 

MixedEM K01 Typha 
not-
Phragmites 

mixed emergent including sparse typha and phrag, 
more phrag to the southeast and some typha w/o 
seed heads to the south 

MixedEm K02 Typha 
not-
Phragmites 

generally mixed emergent with more typha to the 
north and some sparse phragmites to the east 

Meadow K03 Typha 
not-
Phragmites 

Meadow with mixed emergents and some bare soil to 
the east 1/5; no standing water 

Meadow K04 Imperv 
not-
Phragmites 

Meadow with some mixed emergent mixed no 
standing water 

Phragmites K05 Phrag x 
mixed throughout with 35% phrag 30% scrub and 
30% typha 

Phragmites K06 Phrag Phragmites 
Phragmites in the western 2/3 typha and open water 
to the east 

Typha K07 Phrag x 

2/3 typha in standing water, far right edge open water, 
Phragmites to nw just less than 1/4 of pixel, to west 
and south edges of pixel  

Typha K08 Phrag Phragmites 

very mixed pixel, typha dominant in at least the center 
1/2 of the pixel, dense Phragmites to the west, open 
water to east 
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Appendix D- 6 
 

Reference 
Classification 

Point 
ID 

Unsupervised 
Classification 

Target 
Detection 

Classification Sample Point Notes 

Phragmites K09 Phrag x 

West edge Salix and sparse phrag., then a band of 
shallow water north to south with some phragmites 
Salix and emerg. veg., east 2/3 of pixel phragmites 

MixedEm K10 MixedE 
not-
Phragmites Typha, Salix and other, wet but no standing water 

Phragmites K11 Phrag x 
Phragmites and typha mixed throughout most; very 
tall phragmites to the northeast corner 

Typha K12 Phrag x Typha, open water to the ne edge 

Typha K13 Phrag Phragmites 

typha dominant in center of pixel some open water 
the east, an area of phragmites to the north center of 
the pixel 

Typha K14 x Phragmites 

typha dominant, open water to the northeast corner of 
pixel, phragmites to the northwest, probably out of the 
pixel 

Phragmites K15 x Phragmites 
Tall phragmites throughout most with an understory of 
salix, some typha mixed in the south edge 

Phragmites K16 x Phragmites 
Generally tall phragmites with typha to the east and 
west central areas.  

Water2 L01 Phrag Phragmites open water in the middle of the Pensaukee river 
Water2 L02 Phrag x open water 

Water2 L03 Phrag x 
open water with sliver of bank (Salix, trees, shrubs, 
some reeds) 

Water2 L04 Phrag x 
open water with 1/5 pixel bank (Salix, sparse 
Phragmites) 

Water2 L05 Phrag x 
1/2 open water, 1/2 someone’s yard and house, road 
at so. Edge 

Water2 L06 Phrag Phragmites open water in the middle of the Pensaukee river 
Water2 L07 Phrag x open water with tree and rocks in nw corner 
Water2 L08 Phrag x open water 

Water2 L09 Water2 
not-
Phragmites 

generally open water with a point of land with trees, 
bareground and some misc sparse veg. 

Water2 L10 x Phragmites open water in the middle of the Pensaukee river 

Phragmites L11 ForestD 
not-
Phragmites 

Phragmites for bottom 60% of pixel with 20 cm 
standing water, a band of typha to the north of that 10 
m wide and then trees at the north edge of the pixel 

Typha L12 Scrub 
not-
Phragmites 

Typha throughout with some of it laying down, 
Phragmites in the extreme southeast corner 

Typha L13 Phrag x 
Typha and typha litter, shallow standing water 
10cm+/- 

Typha L14 Phrag Phragmites 
typha and open water, standing water 30 cm, 
Phragmites at extreme sw edge of sample 

Phragmites L15 x Phragmites 
Pretty dense stand of phragmties surrounded by 
water, some typha 

Phragmites L16 Phrag Phragmites 

Phragmites esp. to the south and west; typha with 
some phrag to the northeast and open shallow water 
to the east; phragmites again at the east edge 

MixedEm L17 Phrag x 
mixed emergent including Scirpus, sparse typha and 
salix, stand of Phragmites at north edge 

MixedEm L18 Scrub 
not-
Phragmites 

Carex stricta with 10 cm standing water with a few 
scattered shrubs, concentration of shrubs to the 
northwest corner 

MixedEm L19 Scrub 
not-
Phragmites 

Carex st., some shrubs scattered esp to the sw and 
se corners, tree in the far se corner 


