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Because diatom communities are subject to the
prevailing water quality in the Great Lakes coastal
environment, diatom-based indices can be used to
support coastal-monitoring programs and paleoeco-
logical studies. Diatom samples were collected from
Great Lakes coastal wetlands, embayments, and
high-energy sites (155 sites), and assemblages were
characterized to the species level. We defined 42
metrics on the basis of autecological and functional
properties of species assemblages, including species
diversity, motile species, planktonic species, propor-
tion dominant taxon, taxonomic metrics (e.g., pro-
portion Stephanodiscoid taxa), and diatom-inferred
(DI) water quality (e.g., DI chloride [Cl]). Redun-
dant metrics were eliminated, and a diatom-based
multimetric index (MMDI) to infer coastline distur-
bance was developed. Anthropogenic stresses in
adjacent coastal watersheds were characterized using
geographic information system (GIS) data related to
agricultural and urban land cover and atmospheric
deposition. Fourteen independent diatom metrics
had significant regressions with watershed stressor
data; these metrics were selected for inclusion in
the MMDI. The final MMDI was developed as the
weighted sum of the selected metric scores with
weights based on a metric’s ability to reflect anthro-
pogenic stressors in the adjacent watersheds.
Despite careful development of the multimetric
approach, verification using a test set of sites indi-
cated that the MMDI was not able to predict
watershed stressors better than some of the compo-
nent metrics. From this investigation, it was deter-
mined that simpler, more traditional diatom-based
metrics (e.g., DI Cl, proportion Cl-tolerant species,
and DI total phosphorus [TP]) provide superior pre-
diction of overall stressor influence at coastal
locales.

Key index words: coastlines; diatoms; eutrophica-
tion; Great Lakes; indices; metrics; multimetric;
stressors

Abbreviations: 1 ⁄ TTube, inverted transparency
tube measurement; AG, agricultural principal
component; ATM, atmospheric principal compo-
nent; Cl, chloride; DCA, detrended correspon-
dence analysis; DI, diatom-inferred; EBF, eastern
broadleaf forest; GIS, geographic information
system; GLEI, Great Lakes Environmental Indica-
tors; IND, industrial principal component; LMF,
Laurentian mixed forest; MAXREL, maximum
relative stressor value; MMDI, multimetric diatom
index; PCA, principal components analysis; SUM-
REL, standardized composite stressor value; TP,
total phosphorus; TSS, total suspended solids;
URB, urban development principal component;
WA, weighted average

The condition of the Laurentian Great Lakes
coastal environments has received much attention
in recent years (Keough and Griffin 1994, Maynard
and Wilcox 1997, Lawson 2004, Brazner et al.
2007), but no comprehensive long-term strategy is
in place to assess the condition of these environ-
ments and to monitor environmental impacts of
human activities. Biological indicators of coastal
water quality have become a mainstay of ecological
assessments because they reflect the impacts of
watershed activities on adjacent aquatic environ-
ments and have advantages over physicochemical
methods (Hellawell 1986, Reavie et al. 2006). Many
water resource management strategies now rely on
biotic indices (i.e., assessments based on resident
floral and faunal communities). Although biotic
index approaches in the Great Lakes have gained
attention in the last decade (Wilcox et al. 2002,
Environment Canada & U.S. EPA 2003, Albert and
Minc 2004, Niemi and McDonald 2004, Uzarski
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et al. 2004), most indicators proposed for Great
Lakes coastal environments remain uncalibrated
and untested throughout large parts of the basin or
under the full range of environmental conditions.
Developing effective indicators of ecological condi-
tion requires that indicators be calibrated to identify
the accuracy and precision of their responses to
important environmental stressors (Karr and Chu
1999, Seegert 2001) to quantify their value in moni-
toring and assessment programs.

Organism-based indices have been a valuable
monitoring tool in lotic waters and small lake sys-
tems. Index approaches have been commonly
applied for fish (Karr et al. 1986) and invertebrate
(Kerans and Karr 1994) indices, and algal indices
(Rosen 1995, Whitton and Kelley 1995, Chessman
et al. 1999, Hill et al. 2000, Fore and Grafe 2002)
are now being incorporated into routine monitoring
assessments in the U.S. (Charles 1996, Leland and
Porter 2000). We expect that similar index
approaches will be a valuable addition to monitor-
ing programs in the Great Lakes.

Many studies have linked changes in algal assem-
blages, particularly diatoms, to changes in water
chemistry, such as pH, nutrients, and salinity (Smol
2002), with the main goal being to identify and vali-
date environmental optima and tolerances of indica-
tor species. This approach is understandable
because water chemistry variables are meaningful
proxies of human disturbance (e.g., the inevitable
increase in nutrient concentrations resulting from
agricultural practices). Algal indicators also have the
potential to provide an integrated assessment by
evaluating indirect algal responses to human distur-
bances, such as adjacent agricultural and urban
development (Chessman et al. 1999, Hill et al.
2000). Diatoms have become the most widely
applied indicator group because they are taxonomi-
cally distinct, abundant in almost all aquatic envi-
ronments, respond rapidly to changing conditions,
and are well preserved in sediment deposits (Hall
and Smol 1999). Researchers can use the percent-
ages of certain diatom taxa to classify and quantify
long-term environmental changes that result from
anthropogenic activities. Correlations between DI
water quality and watershed characteristics, such as
urban and agricultural extent, have provided an
important link between bioindicators and anthropo-
genic influences in watersheds (Dixit and Smol
1994). Furthermore, evaluations of diatoms can pro-
vide a description of water quality that is not achiev-
able from snapshot chemical analyses; the value of
an integrative biological response can offset the
inconsistency of rapid changes in water chemistry
(Reavie et al. 2006).

Paleolimnologists have developed and applied
robust diatom-based models. Such models are typi-
cally constructed by assuming unimodal responses
of the species across environmental gradients and
calibrating diatom species’ responses to measured

water quality variables in large lake sets. These mod-
els appeal to water quality managers because they
provide inferred quantitative data for specific vari-
ables such as nutrients. Such a model was recently
developed for Great Lakes coastlines (Reavie et al.
2006). While this Great Lakes model will be of inter-
est to managers and paleoecologists, it has some
logistic constraints (e.g., time and monetary dedica-
tion, taxonomic expertise, specialized software, long
learning curve) that may not make it the best choice
for all managers who may be considering the algae
as an environmental quality indicator. Index
approaches provide a means to evaluate environ-
mental quality at a locale based on the diatom
assemblage and can be flexible enough to minimize
some of the aforementioned constraints and suit a
greater user audience. For instance, an index can
be calibrated using genera- instead of species-level
taxonomic assessment, or by assessing functional
groups of taxa, thus reducing sample assessment
effort. Furthermore, algal indices can simulta-
neously include several characteristics of the assem-
blage at a locale, potentially providing an integrated
picture of impacts at a site by not being limited to
inferring a specific water quality parameter.

Several candidate metrics were derived from data
collected as part of a larger study designed to
develop and test indicators of ecological condition
for Great Lakes coastal ecosystems (the Great Lakes
Environmental Indicators [GLEI] project, http://
glei.nrri.umn.edu; Niemi et al. 2004, Danz et al.
2005). The larger study included collection of abun-
dance information on other biotic assemblages,
including birds, fish, amphibians, aquatic macroin-
vertebrates, and wetland vegetation from the U.S.
coastal locations spread throughout each of the
Great Lakes.

Useful indices of environmental quality are
responsive to anthropogenic stressors and have well-
understood, unidirectional responses. While it is
known that metrics, such as algal species diversity,
can reflect limnological condition (Patrick 1973),
rigorous testing of potential metrics is recom-
mended before they are applied. It is noteworthy
that two European indices, the Lange-Bertalot Index
(Lange-Bertalot 1979) and the Trophic Diatom
Index (Kelly and Whitton 1995), have been applied
to these Great Lakes data (Brazner et al. 2007).
Although these two metrics had some capacity to
track human impacts in Great Lakes coastlines, for
this study, it was our desire to use metrics that
focused on local Great Lakes data and required a
minimum of additional reference material.

We aimed to create an MMDI on the basis of the
‘‘best’’ of the candidate metrics. Simply combining
multiple metrics into a single multimetric index is
problematic because it assumes that each metric is
independent and of equal importance. We elimi-
nated metrics that provided redundant information
about environmental quality and only included
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metrics that had significant observed relationships
with anthropogenic stressors. Metrics reflected taxo-
nomic (e.g., proportion of a particular genus) and
functional (e.g., proportion with a particular adap-
tive strategy, such as the ability to assimilate atmo-
spheric nitrogen) characteristics of the assemblage.
These metrics were regressed against watershed
characteristics, such as agricultural intensity and
urban development, to identify the power of each
metric to reflect anthropogenic stress. Our objective
was to develop a diatom-based index of coastal dis-
turbance similar to those developed for fish (Karr
et al. 1986), macroinvertebrates (Kerans and Karr
1994), and periphyton (Hill et al. 2000), which
could be used for the biological assessment of Great
Lakes coastal ecosystems. Validation included com-
paring MMDI scores to watershed stressor data and
determining if the MMDI performed better than
the best of the component metrics and diatom-
based index approaches that are already available.

MATERIALS AND METHODS

Sampling design. Coastal sample locations were selected as
described by Danz et al. (2005). Briefly, the entire U.S.
coastline of the Great Lakes was broken up into 762 segments,
each consisting of a shoreline reach (‘‘segment’’) and associ-
ated watershed (‘‘segment-shed’’). Each segment-shed was
summarized using 207 GIS-based environmental variables that
included anthropogenic activities and soil data. Cluster analysis
was carried out using these environmental data to create
groups of segment-sheds with similar environmental profiles.
Sample locations were randomly selected from each cluster,
excluding inaccessible locations. This selection method pro-
vided a subset of sample locations that reflected the range of
natural and anthropogenic environmental conditions present
along the Great Lakes shorelines.

Five coastal ecosystem types, as described by Danz et al.
(2005), were sampled (Fig. 1): embayments, high-energy
shorelines, coastal wetlands, riverine wetlands, and protected
wetlands. A total of 155 coastal sites had sufficiently complete
diatom and environmental data for consideration in this study.
A related investigation (Kireta et al. 2007) determined that
ecosystem type has some influence on the structure of
Great Lakes diatom assemblages, but that evaluating diatom-
environmental relationships on the combined dataset of
ecosystem types provided the best autecological information.

Field work, sample preparation, and diatom analysis. Field sites
were sampled from June to September 2002 and May to August
2003. A detailed suite of environmental measurements was
collected at each sample location, and full sampling and
analytical methods are provided by Reavie et al. (2006). Quality
assurance ⁄ quality control procedures followed a Quality Assur-
ance Project Plan submitted to the U.S. Environmental
Protection Agency (EPA) at the start of the project that
followed EPA guidelines (U.S. EPA 1999).

Benthic and sedimented diatoms were sampled from
natural substrates from 0.5 to 3 m water depths. Surface
sediments were preferentially sampled, but 12% of sites
required the sampling of epilithon due to unsuitable
sediment regimes. Sampling and preparation methods for
diatoms are also described by Reavie et al. (2006). Diatom
assemblages for each sample were represented by at least 400
valves counted along slide transects at ·1,000 magnification
using oil immersion microscopy. Individual valves were
identified to the lowest taxonomic level possible using

numerous diatom checklists and iconographs (see Reavie
et al. 2006).

Statistical analyses. Forty-two candidate metrics were tested
to identify their potential as components of a multimetric
diatom index (MMDI; Table 1). Metrics were compared to two
main parameters: ‘‘stress’’ and the ‘‘natural gradient.’’ In this
article, stress (or stressors) refers to anthropogenic factors that
result in possible or realized impacts on limnological quality
(e.g., agriculture, urban development), whereas the natural
gradient refers to ranges of factors that have little or no
anthropogenic component (e.g., spatial coordinate, water
temperature). We assumed that ideal metrics for multimetric
compilation are those that were (A) correlated to gradients of
anthropogenic disturbance and (B) uncorrelated with other
metrics. Some metrics, such as DI TP, were expected to be
strongly correlated to environmental variables that reflect
anthropogenic stress, such as the proportion of agricultural
land cover in a watershed. Other metrics, such as the relative
abundance of Planothidium species, could not be predicted
because the environmental affinities (in terms of anthropo-
genic stressors) of these metrics have not yet been clearly
defined in the literature. The candidate metrics we tested are
described below.

DI water quality variables: Diatom transfer functions were
derived by relating diatom species assemblages in the coastal
samples to corresponding measured water quality variables
(Reavie et al. 2006). The resulting transfer function for each
variable comprises species coefficients (i.e., environmental
optima) that can be used to infer quantitative information
about the variable, based on the relative abundance of each
species in a given sample. Particularly robust diatom-based
models were derived for five variables that are important water
quality indicators: TP, a critical nutrient that is directly related
to environmental problems such as cultural eutrophication
(Schindler 1977); chl a, a direct indicator of algal standing
crop and a useful indicator of nutrient load and consequent
algal growth; total suspended solids (TSS), a proxy for
inorganic particulate load and water clarity; transparency tube
measurement (1 ⁄ TTube), a simple method for estimating
transparency, inverted to make the data directly comparable to
turbidity measurements (Anderson and Davic 2004); and
chloride (Cl), a potential indicator of pollution from road salt
applications and other sources (Godwin et al. 2003). Addi-
tional variables (e.g., suspended solids and nitrogen com-
pounds) also produced robust diatom-based models, but these
variables strongly covaried with the selected variables and so
were predetermined as redundant.

Full details of the development of diatom inference models
are provided in the associated document (Reavie et al. 2006),
but the abbreviated methods are as follows: Transfer functions
were developed using weighted averaging (WA) regression and
calibration (C2 software; Juggins 2003). DI estimates of water
quality variables for each sample were calculated by taking the
optimum of each species to that variable, weighting it by its
abundance in that sample, and calculating the average of the
combined weighted species optima. Because of previous
analyses, we were already aware that DI water quality data were
correlated with watershed stressor data; however, these rela-
tionships had not yet been considered in the context of other
potential metrics. We expected the five selected DI parameters
to be positively correlated with environmental disturbance.

Shannon–Weaver index of diversity: Metrics, such as species
richness and evenness, are often used to describe species
distributions, but they rely on fixed sample areas or volumes
and complete assessment of species composition in a sample to
derive values. These are not practical candidate metrics,
because we assessed only portions of our samples (i.e.,
microscope slide transects), and good estimates of diatom
species richness at a site would require counts into the
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thousands or higher to identify very rare taxa (Patrick et al.
1954). Instead, we relied on the diversity of the assemblage data
from each sample because diversity is likely to be highly
correlated to richness and evenness. Two candidate diversity
metrics were calculated: one based on the highest taxonomic
resolution (>2,000 taxa) and another based on the genera (98
genera). It was expected that these two metrics would strongly
covary, and so at least one of them would be eliminated from
multimetric consideration. Both metrics were tested to deter-
mine if lower taxonomic resolution (genus) could provide
meaningful environmental information and a potential means
for rapid assessment of the diatom assemblage.

Diatom species diversity usually decreases as a result of
disturbance such as cultural eutrophication (Williams 1964,
Lotter 2001), although some researchers have reported
increases in diatom diversity under moderate stress (Steven-
son 1984). Despite conflicting observations in the literature,
on the basis of cursory analyses of the diatom data, we
expected diversity to be inversely related to environmental
disturbance.

DCA score: Detrended correspondence analysis (DCA), with
detrending by segments and downweighting of rare taxa, was
used to define the major gradient of floristic variation in the
diatom data (Hill and Gauch 1980). DCA assigns axis scores on
the basis of assemblage similarity, with the first axis capturing
the most important gradient of variation in the diatom data.
For example, two samples with similar diatom assemblages will
have similar DCA scores, whereas the two most dissimilar
assemblages will likely lie on opposite ends of the DCA
gradient. The diatom-based DCA score has previously been
used successfully to develop a disturbance index for the
Environmental Monitoring and Assessment Program-Surface

Waters (EMAP-SW; Dixit and Smol 1994). Although a strong
correlation between environmental disturbance and DCA score
was anticipated, the direction of this correlation could not be
predicted, because the ‘‘low’’ and ‘‘high’’ ends of the DCA
gradient are arbitrary. Because the first two DCA axes reflect
the two most important gradients capturing variation in the
assemblage data, these two axes (i.e., their sample score data
sets) were evaluated as candidate metrics.

The use of the DCA score as a metric may be somewhat less
accessible to some users because the DCA score of a new
diatom sample can only be derived by treating the new sample
as supplementary in a DCA with the ‘‘active’’ diatom samples
that were used to derive the index (i.e., the entire suite of Great
Lakes diatom data). Provided an analyst has the original
calibration data set and appropriate software, such as CANO-
CO (Ter Braak and Šmilauer 2002), this is a rapid calculation.

Proportion of the most dominant diatom: The relative abun-
dance of the dominant diatom taxon in an assemblage can
reflect the evenness of the taxonomic representation in an
assemblage. Species that are better adapted to stressful condi-
tions, such as nutrient enrichment, will have a competitive
advantage during an increase in nutrient flux, resulting in an
uneven distribution of individuals among taxa (Gray 1989).
Often, dominance by a single r-selected taxon is noted
following physical or chemical disturbance, or persistently in
areas where disturbance events are frequent. On the basis of
preliminary analysis, we noted that natural physical disturbance
had an influence on the dominant diatom metric. High-energy
and embayment locales were more likely to have higher values
of the dominant diatom metric than wetland locales (ANOVA;
P < 0.0001). Here, we further evaluated this metric in terms of
anthropogenic stressors. We anticipated that the percent

Fig. 1. Location map of the Great Lakes study area.
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dominance by a single taxon would increase with greater
environmental disturbance.

Proportion motile diatoms: The proportion of motile diatoms
has been used as an index of siltation in Montana streams
(Bahls 1993) and cited as a potential metric by other investi-
gators (Mills et al. 1993, Stevenson and Pan 1999, Hill et al.
2000, Fore and Grafe 2002). Periphytic diatoms with the ability
to move purposely using their raphe structure might have a
competitive ability in systems where anthropogenic activities
periodically generate silt and other factors that influence water
clarity and ⁄ or sedimentation. We expected that the motile
diatom metric would increase with greater environmental
disturbance.

Proportion planktonic diatoms: Studies of contemporary and
sediment core assemblages from lakes have shown that plank-
tonic diatoms increase in relative abundance in response to
cultural eutrophication (Nygaard 1949). Other diatom studies
have further shown that there are characteristic oligotrophic
(e.g., Cyclotella; Stockner and Armstrong 1971) and eutrophic
(e.g., Cyclostephanos; Reavie et al. 2006) species of planktonic
diatoms, subgroups of the plankton that have opposite mean-
ing in terms of nutrient enrichment. We anticipated that
planktonic diatoms would increase in relative abundance with
increased disturbance, particularly at disturbed sites in the
productive Lake Erie.

Proportions of ‘‘tolerant’’ diatoms: A number of published
studies provide index values for diatom species that reflect
their tolerance and sensitivity to water quality variables, such as
nutrients (e.g., Van Dam et al. 1994, developed in the
Netherlands). For example, Fore and Grafe (2002) used
published lists of autecological characteristics of diatom species
to derive metrics for Idaho rivers. Because detailed water
chemistry data were available for our Great Lakes coastal
locations, we derived new lists that describe the species
responses to water quality variables. Similar to those selected
for DI data (above), TP, chl a, Cl, TSS, and 1 ⁄ TTube were
identified as strong determinants of diatom assemblage prop-
erties (Reavie et al. 2006) and potentially important indicators
of anthropogenic influence. ‘‘Tolerant’’ and ‘‘sensitive’’ clas-
sifications were developed for the common diatom species for
each of these five variables (Appendix S1 in the supplementary
material), and metrics were calculated based on the proportion
of tolerant species in each sample assemblage.

To characterize the autecological information for each
taxon, species optima and tolerances were derived as
described above for transfer function development (Reavie
et al. 2006). Species with autecological characteristics greater
than selected cut-off criteria were identified as being tolerant
to that environmental variable. We started with TP, setting a
cut-off criterion of 30 lg Æ L)1, a standard definition for
nutrient concentrations in eutrophic systems and used by
many states for assessment and regulatory purposes (Carlson
1977, MDEQ 2001, MPCA 2004a,b, WDNR 2005). We took a
conservative approach to avoid the inclusion of cosmopolitan
species (i.e., species with broad tolerances covering a large
portion of the environmental gradient); species with a lower
tolerance limit greater than the cut-off value were identified
as tolerant. Using this criterion, 20% of the species were
identified as tolerant of high TP concentrations. Similar
methods were used to identify species that are tolerant of
high turbidity (1 ⁄ TTube), chl a, TSS, and Cl concentrations,
but tolerant species were considered those that had lower
tolerance limits above the 80th percentile of species (i.e., the
20% most tolerant taxa). In this way, the respective metrics
would similarly define the upper 20% most tolerant species in
the Great Lakes coastal systems. The critical concentrations at
the 80th percentile were 16.0 lg Æ L)1 for chl a, 5.4 mg Æ L)1

for TSS, 0.010 cm)1 (98 cm tube visibility) for 1 ⁄ TTube, and
11.5 mg Æ L)1 for Cl. For a user, these five metrics are
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relatively easy to calculate on the basis of species assignments
in Appendix S1.

Proportions of araphid, monoraphid, and biraphid diatoms: The
pennate diatoms can be divided into three distinct groups
based on the presence of the raphe, a longitudinal slit through
the valve face that is characteristic to several pennate genera.
The raphe is used for motility, adherence, and in some species
appears to be superfluous (Round and Crawford 1990).
Araphid genera (e.g., Staurosira, Fragilaria) have no raphe
structure and tend to dominate the pennate-planktonic and
epipsammic taxa. Monoraphid genera (e.g., Achnanthidium,
Cocconeis) have a raphe on one valve and are common epiphytic
taxa. Biraphid genera (e.g., Navicula, Nitzschia) have a raphe on
both valves and are common in all periphytic environments. To
date, such metrics have not been rigorously tested, and we were
uncertain about relationships between these diatom groups
and stressor data.

Proportions of nitrogen fixers and heterotrophs: The diatom
genera Epithemia and Rhopalodia are known nitrogen fixers
because they harbor endosymbiotic bacteria that can convert
atmospheric nitrogen (N2) into biologically accessible forms
(Mulholland 1996). Diatom species such as Nitzschia frustulum
and Mayameae atomus (see Appendix S1 for taxonomic authors)
are known heterotrophs and so under certain conditions can
use amino acids and other metabolites created by other
organisms as a source of nutrients (Tuchman 1996). The
proportions of nitrogen fixers and obligate + facultative
nitrogen-heterotrophic taxa were calculated based on species
assignments developed by Van Dam et al. (1994). Although
little is known about the ecological significance of these
characteristics of certain diatoms, we anticipated that nitrogen
fixers would decline and nitrogen heterotrophs would increase
with increasing stress that would increase both organic and
inorganic nitrogen loading to the water column.

Proportions of species and species groups: Several metrics were
derived from 15 sufficiently abundant genera to determine if
they had potential as metrics. We did not anticipate the
direction of responses of periphytic genera such as Cocconeis
and Planothidium to anthropogenic stressors, so their evalua-
tion was treated as exploratory (details of expected responses,
based on the literature, are in Table 1). Metrics based on
groups of genera were also defined: stephanodiscoid
(Stephanodiscus + Cyclostephanos), Staurosira-type complex
(Staurosira + Staurosirella + Pseudostaurosira), and cymbelloid
(Cymbella + Encyonema + Encyonopsis + Cymbopleura + Delicata +
Cymbellopsis + Afrocymbella). Stephanodiscus and Cyclostephanos
are generally considered planktonic indicators of high nutrient
concentrations (Anderson 1990), so it was expected that the
relative abundance of stephanodiscoid diatoms would increase
with increasing stress.

Cyclotella has often been attributed to oligotrophic open-
water conditions (Stockner and Armstrong 1971), but certain
species of Cyclotella, such as C. stelligeroides, have been noted to
be indicators of high nutrients. Our description of Cyclotella
includes some likely polyphyletic genera that have been
differentiated, including Discostella and Puncticulata. We main-
tained Cyclotella as a simplified index but acknowledge that
newer information on the polyphyletic nature of this genus
may indicate that it contains several genera with different
autecological properties.

We could not speculate on the responses of araphid and
cymbelloid complexes to stress, so they were treated as
exploratory metrics. Because it was the most common taxon
identified across the Great Lakes samples, a metric ‘‘Achnan-
thidium minutissimum complex’’ was derived based on the sum
of the relative abundance of A. minutissimum, its forms and
varieties, as well as taxa formerly belonging to the species def-
inition of Achnanthes minutissima (Krammer and Lange-Bertalot
1991). We chose to build this complex because the subspecies

identification for A. minutissimum is often not possible using
LM, particularly when specimens are enumerated in girdle
view. Results from the Great Lakes indicate a clear dominance
of A. minutissimum in lower-nutrient environments (Reavie
et al. 2006), so we anticipated that this metric would decrease
with greater environmental disturbance.

Quantifying upland anthropogenic and natural watershed charac-
teristics. The following methods briefly summarize approaches
used by Danz et al. (2005), Reavie et al. (2006), and
T. Hollenhorst (personal communication) to characterize
sample sites. Within GIS, a polygon was drawn encompassing
sampling points for all GLEI indicator groups at a selected
locale, and this polygon was assumed to be the receiving area
for the watershed. Watersheds were delineated for each of the
wetland and embayment polygons using 30 m digital elevation
models and ArcInfo (ESRI 2000). High-energy sample locales
have some fundamental physical differences from the wetlands
and embayments, particularly that the biota are more exposed
to physical activity in the adjacent Great Lake, and those biota
are likely to be influenced by a longer stretch of receiving
coastline than that defined by the polygons. Therefore,
identifying the actual contributing area for high-energy sites
required some additional calculations (T. Hollenhorst, per-
sonal communication). First, the immediate watershed for
each high-energy polygon was agglomerated with watersheds
on either side, including stream catchments and coastal
catchments with no streams (‘‘interfluves’’). Agglomeration
continued on each side of the polygon’s watershed until the
threshold area of 9 km2 was reached; this threshold was
determined as twice the area of the median segment-shed size
across the lakes. The associated stressor summaries were then
summarized for each agglomerated high-energy watershed area
using area-weighted means for the corresponding watershed
areas.

Over 200 environmental variables in seven categories of
environmental variation (Danz et al. 2007) were summarized
for each watershed. Principal components analysis (PCA)
within five categories of environmental variation was used to
reduce dimensionality and derive overall gradients. For exam-
ple, 26 agricultural variables (including pesticide runoff and
leaching, cropland area, nitrogen and phosphorous exports,
percent of county treated for various pests, and livestock
inventories) comprised an agricultural category, and the first
principal component (PC) was identified as a gradient of
watershed agricultural activity for the Great Lakes coastlines.
The final watershed-level predictor matrix consisted of four
anthropogenic principal components (agriculture [AG], atmo-
spheric deposition [ATM], industrial point source pollution
[IND], and urbanization [URB]) and one natural PC (soil
characteristics [SOIL]).

Identifying metrics from candidate metrics. Several candidate
metrics had skewed distributions, and log10 transformation was
used as appropriate to better meet statistical assumptions
(Table 1). The following approach was used to identify metrics
for multimetric development from the complete list of candi-
date metrics: (i) Correlation among candidate metrics was
investigated to identify and eliminate redundancy. (ii) The
suitability of each candidate metric was evaluated using
stepwise regression to stressor principal components.
(iii) Similarly, each candidate metric was related to natural
gradients using stepwise regression to identify metrics that were
being largely determined by natural factors. Within groups of
covarying candidate metrics, metrics were selected that best
tracked stress and least tracked natural gradients.

Correlation among candidate metrics: All candidate metrics
were compared using a pair-wise correlation matrix. Candidate
metric pairs with an absolute-value Pearson correlation coeffi-
cient (|r|) greater than 0.7 were noted as being redundant.
Candidate metrics were also explored using PCA to provide a
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comprehensive assessment of the relationships among these
metrics.

Candidate metric ⁄ stressor relationships: Each candidate metric
was regressed against stressor data using multiple linear
regression and evaluated using the squared Pearson’s correla-
tion coefficient (R2). Four stressor variables were used in
multiple regressions: agricultural (AG), atmospheric (ATM),
industrial (IND), and urban (URB) PC axis scores. This
regression tested the relationship between watershed proper-
ties and diatom metrics in the adjacent coastal system and was
used to determine which candidate metrics were being signif-
icantly influenced by watershed stressors. A metric with a
significant relationship to stressors would have potential as a
component of the final MMDI.

Preliminary visual assessment of metric-stressor scatterplots,
as recommended by Karr and Chu (1999), indicated our
assumption of linear relationships between metric and stressor
data was appropriate in most cases; a majority of these plots
showed either linear relationships or no noticeable pattern. A
few of the metrics had subtle threshold (i.e., varying in
response above and below a particular stressor value) or
wedge-shaped (i.e., narrowing or widening of the range of
metric scores as stressor values increased) responses along
stressor gradients. Despite the presence of some complicated
metric responses, we decided that assuming linear responses
was still the most appropriate, user-friendly choice for devel-
opment of the index.

Candidate metric ⁄ natural gradient relationships: Similar to
characterizing relationships to stressors, candidate metrics
were related to a suite of variables describing the natural
variation that occurred in our data set because of spatial,
geophysical, and time factors. These natural variables were
latitude, longitude, watershed soil PC scores, habitat type, and
water temperature. For regression of habitat, five binary
(dummy) variables were created, one for each coastal habitat
type. For instance, a coastal wetland (CW) variable was created;
samples from coastal wetlands were identified by ones, and all
other habitats were given zero values. Water temperature was
assumed to be a seasonal variable that also may have been
influenced by geomorphology. For instance, in midsummer, a
shallow, protected wetland is likely to be warmer than a high-
energy locale that is more directly influenced by water from the
adjacent Great Lake.

Selection of final metrics: Metrics were selected if they did not
strongly covary with other candidate metrics and were signif-
icantly correlated to one or more watershed stressor variables.
Within clusters of candidate metrics (identified by the corre-
lation matrix), the metric with the highest ratio of stressor ⁄ nat-
ural gradient correlation was selected, assuming a significant
relationship to the stressor gradient existed for that variable.

Multimetric development. The MMDI was developed based on
the sum of the selected metrics, with each metric weighted
based on the strength of its relationship to stressors. In this way,
metrics with weak, but still significant, relationships to anthro-
pogenic stressors would play a lesser role in multimetric
calculations.

Part of the GLEI project involved the identification of
reference locations for this and future ecological assessments
(Host et al. 2005). Using remotely sensed and other GIS data,
the degree of anthropogenic disturbance was characterized for
a suite of discrete polygons spanning the U.S. shoreline of the
Great Lakes. These polygons were assigned a maximum relative
score (MAXREL) based on their contributing stressors.
Although the goal of Host et al. (2005) was to identify the
‘‘least disturbed’’ (i.e., lowest MAXREL) sites for reference
considerations, all sites were assigned a ‘‘reference score.’’
Recent refinement of this index involved standardization of the
composite stressors and summing of these stressors into a new
score, SUMREL (G. E. Host, L. B. Johnson, J. J. H. Ciborowski,

T. P. Hollenhorst, unpublished; G. Host, Natural Resources
Research Institute, personal communication). Because these
SUMREL sites encompass our diatom sample locations, we
were able to regress reference scores against selected metrics
and MMDI scores, providing us with a means to assess the
ability of the MMDI to track stressor influences.

To test the ability of the MMDI and its component metrics to
track disturbance, a test set of 47 samples (30%) was selected,
and the index (including all component metrics) was redevel-
oped using the new 108-sample data set. Samples in the test set
were selected to maximize the gradient of anthropogenic
influence; all samples were ordered according to their agricul-
tural principal component score, and every third sample was
picked for testing. Using the reduced ‘‘calibration’’ data set, new
metric and MMDI equations were developed, and scores were
calculated for each of the test samples. Test sample scores were
related to corresponding SUMREL scores to quantify the relative
strength of the metrics and MMDI to reflect ecosystem stressors.

RESULTS

Identifying metrics from candidate metrics. Correlation
among candidate metrics: A correlation matrix
(Appendix S2 in the supplementary material) con-
tained numerous significant correlations among the
candidate metrics, but relatively few correlations
above |r| = 0.70. Not surprisingly, particularly high
correlation is identified between DI chl a and DI TP,
two variables that strongly reflect trophic condition.
Other correlated pairs that were expected include
the Shannon–Weaver calculations based on all taxa
and genera, and % araphid ⁄ % Staurosira complex;
Staurosira and its related genera are araphid and in
many cases make up the bulk of the araphid diatom
assemblages in the coastal Great Lakes samples.

The PCA of candidate metrics illustrates the clus-
ters of intercorrelated metrics (Fig. 2); axes 1 and 2
account for 36% and 21% of the variance, respec-
tively. Five clusters of intercorrelated candidate met-
rics were identified, and 19 metrics were not
considered highly redundant with any others
(Table 1). Percent motile taxa was grouped with
percent biraphid taxa (cluster 1), an obvious result
of the fact that the majority of freshwater biraphid
taxa are also motile. Interestingly, percent Navicula
(a motile genus) was not considered redundant with
these two metrics, although it occurs nearby with a
relatively high axis 1 score. On the opposite quad-
rant from the motile-biraphid group lies nonmotile
metrics, araphid taxa and the Staurosira complex
(cluster 2). The upper right quadrant contains a
large cluster of intercorrelated candidate metrics
that are known to reflect disturbance (cluster 3).
Although DCA AX1 is not intuitively related to the
other metrics in the cluster, it is not surprising that
the primary axis in the DCA is largely a gradient of
low to high trophic condition or disturbance and so
is correlated with other disturbance metrics. Cluster
4 represents three diversity-based metrics. The first
two axes of the PCA (Fig. 2) do not adequately
show the separation of this cluster from the other
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metrics near the center of the diagram. The mem-
bers of this ‘‘diversity’’ cluster all have high PCA
axis 3 scores, and so this cluster can be considered
to be separated from these other metrics along the
third axis, which is not shown. The members of
cluster 5 do not have an intuitive relationship but
may reflect occurrences of ecologically similar dia-
tom taxa.

Regressions against stressors: Several interesting met-
ric responses to stressors were observed (Table 1).
Multiple regression identified significant relation-
ships between 26 candidate metrics and the four
stressor variables. Several of these responses were
expected, such as the increase in relative abundance
of eutrophic, TSS-tolerant, and Cl-tolerant taxa with
increasing stress. Strong relationships were found
between candidate metrics and each of AG, ATM,
URB, and IND. The strongest overall response was
increasing DI Cl against increasing agricultural
intensity. It can also be seen that there were signifi-
cant responses of metrics such as % biraphid dia-
toms and % Martyana to stressors including urban
development and atmospheric deposition, respec-
tively.

Regressions against natural variables: Based on mul-
tiple linear regressions with the natural Great Lakes

gradients (R2
natural; Table 1), it is clear that the can-

didate metric scores are more strongly driven by the
natural factors we measured than the four stressor
variables. The ratio of R2

anthropogenic to R2
natural indi-

cates that the relative response to stressors ranged
from 0.10 (% planktonic) to 0.89 (% Cocconeis),
although it is noteworthy that candidate metrics
with high R2

anthropogenic values also tended to have
high R2

natural values.
Selection of metrics from candidate metrics: Fourteen of

the candidate metrics were considered both respon-
sive to stressors and nonredundant and so met the
selection criteria for multimetric development
(Table 2). There was moderate variation in the rela-
tive weights of selected metrics. For instance, the
weaker response of the % Martyana to stressors
(Table 1) means % Martyana will be given a lesser
weight than, for example, DI Cl in the MMDI.

MMDI development. One of the selected metrics,
% Geissleria, had conflicting responses to stressor
variables (Table 1). In this case, the stress-response
to be used in multimetric calculation was chosen to
be positive (i.e., increasing in value with greater
stress) based on independent t-tests during multiple
regression calculations (t = )2.01 for AG, 2.16 for
ATM, and 3.02 for URB). Because of the dominant

Fig. 2. Principal components analysis (PCA) of the candidate metrics. Groups of redundant metrics, as determined using a correlation
matrix, are encircled. The cluster containing anticorrelated variables is grouped via a connecting line through the origin. 1 ⁄ TTube,
inverted transparency tube measurement; Cl, chloride; DCA, detrended correspondence analysis; DI, diatom-inferred; TP, total phospho-
rus; TSS, total suspended solids; A. minut., Achnanthidium minutissimum; Stauros., Staurosira.
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positive responses of % Geissleria to the ATM and
URB stressor variables, this response was the chosen
assumption in multimetric calculations. It was neces-
sary to standardize the selected metric scores using
the following equations as appropriate. A raw score
for a metric was calculated as a value between zero
and one, with higher values reflecting less stress
(i.e., better watershed conditions). If a metric
responded positively to stress, the metric’s score
(M) was calculated using the following equation:

Mn ¼ 1� xn �minn

maxn �minn

� �
ð1Þ

where n is the metric identifier, minn and maxn are
the minimum and maximum measured values for
that metric from the Great Lakes training set, and
xn is the measured metric value at a given site. The
score was subtracted from one to invert the value,
such that previously higher values become lower to
reflect ‘‘poorer’’ conditions. Metrics with negative
responses to stress do not require this correction
and so were calculated using equation 2.

Mn ¼
xn �minn

maxn �minn

� �
ð2Þ

The resultant scores for each selected metric were
then multiplied by their respective weight (w) and
summed to create the multimetric total, G (eq. 3).
This equation assumes the 14 selected metrics
(Table 2) are being used.

G ¼
X14

n¼1

Mnð Þ � wnð Þ ð3Þ

All metric calculations were scaled to create an
index that, theoretically, lies between 0 and 10, with
0 being the least desirable condition and 10 being
the best. Scaling was performed by summing (total
of selected R2

anthropogenic = 2.06) and scaling up the

weights (w) so that this total became 10, the theo-
retical highest G. Of course, because the highest Ms
did not all occur at the same coastal site, the maxi-
mum G from the training set was not expected to
reach 10. However, G values outside the range of
those calculated from the training set may be
obtained in the future, as metric scores may be less
or greater than those obtained in our training set.

Final calculation requirements for each M are
shown in Table 2. For example, the calculation for
% Navicula (x% Navicula) is calculated using the mini-
mum (0.24%) and maximum (53.1%). Also note
that the ‘‘1-’’ correction is needed because of the
positive response of % Navicula to stress, and that it
is required that the input values be log-transformed
for this metric (1 was consistently added to log-
transformed data due to the presence of values <1).

M%Navicula ¼ 1� logðx%Naviculaþ 1Þ� logð0:24%þ 1Þ
logð53:1%þ 1Þ� logð0:24%þ 1Þ

� �

ð4Þ
Reducing equation 4 results in the equation as
shown in Table 2. Weights are also provided, and
note that the weight for % Navicula has been scaled
from 0.207 (R2

anthropogenic) up to 1.007. As denoted
by equation 3, the series of weight-times-score calcu-
lations were then summed for a given sample, pro-
viding the final multimetric score.

A significant negative correlation occurred
between the MMDI and SUMREL reference scores
(Fig. 3A). Clearly, a higher MMDI score equates
with a lower SUMREL (i.e., lower stress), indicating
that the MMDI provides appropriately low results in
reference areas. However, when the MMDI was
applied to the 43-sample test data set, there was a
decline in the squared correlation coefficient
between MMDI and SUMREL, from r2 = 0.54 to
r2 = 0.32. Three of the candidate metrics with high
r2

anthropogenic (Table 1) were also selected, and these

Table 2. Metrics selected for inclusion in the multimetric index, including weights and scoring equations to be used in
multimetric calculations.

Metric
Transformation

applied
Response
to stress

Weight
(w) Score (M) calculation

DI Cl (log [mg Æ L)1 + 1])* None › 2.311 1.094 ) x ⁄ 1.71
% Araphid Log fl 0.915 log(x + 1) ⁄ 1.95
% Monoraphid None fl 0.491 x ⁄ 81.19
% Biraphid None › 0.832 1.059 ) x ⁄ 85.21
% Martyana Log fl 0.550 log(x + 1) ⁄ 1.29
% Eunotia Log fl 0.302 log(x + 1) ⁄ 1.58
% Achnanthidium minutissimum complex Log fl 0.326 log(x + 1) ⁄ 1.87
% Cocconeis Log › 0.414 1 ) log(x + 1) ⁄ 1.77
% Psammothidium Log fl 1.061 log(x + 1) ⁄ 1.56
% Rossithidium Log fl 0.219 log(x + 1) ⁄ 1.07
% Navicula Log › 1.007 1 ) [log(x + 1) ) 0.093)] ⁄ 1.64
% Geissleria Log › 0.418 1 ) log(x + 1) ⁄ 1.58
% Hippodonta Log › 0.876 1 ) log(x + 1) ⁄ 1.61
% Amphora Log › 0.277 1 ) log(x + 1) ⁄ 1.63

Diatom-inferred (DI) chloride (Cl) (*) requires high-resolution taxonomy and so may be removed in a simplified application
of the multimetric application.
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Fig. 3. Regressions of MMDI and selected metric scores against SUMREL (an indicator of watershed stressor influence). Regressions
are illustrated for the full data set (155 sites, black lines) and independent test data set (47 sites, gray lines). Cl, chloride; DI, diatom-
inferred; MMDI, multimetric diatom index; SUMREL, standardized composite stressor value; TP, total phosphorus.
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candidate metrics were also strong predictors of
SUMREL. There was no decline in the ability of DI-Cl
(r2[full sample set] = 0.54, r2[test sample set] = 0.57;
Fig. 3B), DI-TP (r2[full sample set] = 0.38, r2[test
sample set] = 0.49; Fig. 3C) or % Cl-tolerant (r2[full
sample set] = 0.46, r2[test sample set] = 0.61;
Fig. 3D) to track stressors at the test locations. In
no comparisons were the slopes of full and test
regressions significantly different (Student’s t-test,
P = 0.05).

To determine if using diatom-based reconstruc-
tions provided better information about watershed
stressors than measured chemical variables, SUM-
REL was also compared with measured data. Both
DI-Cl (r2[test sample set] = 0.57; Fig. 3B) and DI-
TP (r2[test sample set] = 0.49; Fig. 3C) were better
correlated to SUMREL than measured Cl (r2[test
sample set] = 0.52; Fig. 3E) and TP (r2[test sample
set] = 0.36; Fig. 3F), respectively. It is interesting
that for the three metrics we tested (Fig. 3, B–D),
r2 consistently increased in the test sample set
regressions. The same thing occurred for observed
Cl and TP (Fig. 3, E and F), indicating that at least
part of this increase was likely due to the specific
subset of sample data chosen for independent
testing.

Metric score distribution across the Great Lakes. There
is a clear distinction in the metric scores between
the southern (EBF) and northern (LMF) ecopro-
vinces (Fig. 4).

DISCUSSION

This manuscript provides a method for metric
and multimetric development using algae and a set
of detailed, previously unavailable stressor data for
the Great Lakes. Although widely used, multimetric
approaches have been scrutinized because of the
subjectivity involved in metric selection, question-
able metric responses to stressors, the implications
of covariance among metrics, and the validity of
compiling metric scores as if each metric was
equally important (Fore et al. 1996). Also, index
approaches leading to enforceable regulations must
be able to distinguish between human-caused
changes in the biological assemblage and natural
variability. In this study, we made efforts to take
these concerns into account while analyzing diatom
responses to anthropogenic variables. We have
attempted to minimize many of the problems that
have been associated with multimetric approaches:
we assessed metric responses to robustly defined
anthropogenic and natural gradients, and we down-
weighted or eliminated metrics that were less able
to track stressors. It was necessary to eliminate some
metrics that are traditionally associated with anthro-
pogenic impacts that are commonly applied in bio-
logical monitoring criteria. For instance, species
diversity is an archetypal assessment of habitat qual-
ity for many organism groups (Huston 1979), but

for the Great Lakes diatoms, the Shannon–Weaver
metric appears to be of little use. Functional (e.g.,
% araphid) and genera (e.g., % Navicula) groups
were much more meaningful in terms of tracking
stressors and so comprised much of the multimetric
tool.

We hypothesized that combining numerous com-
plementary indicator metrics would provide a robust
means to infer condition. While the MMDI provided
scores that were related to watershed stressors, it did
not provide an advantage over the best of the candi-
date metrics. Even with down-weighting of the
weaker metrics, these metrics impaired the collective
ability of the MMDI. At this time, we do not recom-
mend this diatom-based multimetric approach for
Great Lakes coastlines. Even a relatively simple met-
ric such as % Cl tolerant taxa reflected watershed
stressors better than the MMDI. Metrics based on
weighted averaging (DI-Cl, DI-TP; Reavie et al.
2006) remain the superlatives because of their pro-
ven ability to reflect stress and their superiority over
their measured counterparts (e.g., water quality
measurements for Cl and TP).

How should these metrics be used? Several useful
metrics have resulted from this work, and Figure 4
includes 12 of the metrics that we feel have some
value as indicators in monitoring programs.
Although there is much intercorrelation among
metrics, a user may choose certain metrics to
reflect particular aspects of site quality. For
instance, % Cl-tolerant taxa infers relative impacts
from road salt applications, whereas % eutrophic
taxa infers nutrient characteristics. Other metrics,
such as % Navicula and DCA axis 1 score, are less
specific and would be used as more general indica-
tors of stress.

The following are recommendations for interpre-
tation of metric results, acknowledging that cut-off
criteria for what might be considered ‘‘good’’ or
‘‘poor’’ condition is rather arbitrary. Because of the
differences in geology, population density, and types
of human activities between the LMF and EBF,
results from the two ecoprovinces should be treated
separately, using percentile data (e.g., Fig. 4) as a
general guide. Using % Cl-tolerant species as an
example, and in the context of our data set, scores
greater than 1.4 (�24% Cl-tolerant taxa, back-trans-
formed) from EBF represent the top 25th percentile
(i.e., the greatest stressor impact). This upper 25th
percentile in the LMF includes scores >�0.4
(�1.5%). The least impacted sites would be those
<0.5 in the EBF, or zero in the LMF.

We anticipate application and possible refine-
ment of these diatom-based indices in the future.
We expect that the value of these metrics will be
illustrated from their eventual use as tools in paleo-
ecological or monitoring applications. Although we
were unable to develop a sufficiently robust multi-
metric index, we do not recommend against such
an approach in the future. It may be that a more

798 EUAN D. REAVIE ET AL.



Fig. 4. Boxplots of selected metric scores from the Great Lakes coastal training set diatom assemblages. Metrics were selected for this
plot of they had R2

anthropogenic > 0.15 and R2
anthropogenic:R

2
natural ratio > 0.35, indicating that they had relatively strong relationships with

anthropogenic factors. Plots illustrate score ranges for samples in the northern (Laurentian mixed forest; LMF) and southern (eastern
broadleaf forest; EBF) ecoprovinces. The top and bottom of each box are the 75th and 25th percentiles, and a line is drawn through the
middle of each box at the median. Notches in each box are used for statistical comparison; if notches from two boxes do not overlap, the
medians are significantly different (P < 0.05). The upper and lower tails, respectively, indicate the largest and smallest scores adjacent to
the 1.5 interquartile ranges of the upper and lower box percentiles. Circles indicate outliers. Cl, chloride; DCA, detrended correspon-
dence analysis; DI, diatom-inferred; TSS, total suspended solids.
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stringent selection process is needed for component
metrics, and ⁄ or that the calculated outputs from
individual metrics need to be considered for their
independent ecological meaning, instead of lump-
ing them into a single index.

This work establishes new (and tests existing)
methods for algal indicator development and valu-
able tools for interpretation of monitoring data
and paleolimnological records. We used indepen-
dent assessments in two ecoprovinces to ensure
that our selected metrics were at least able to dis-
tinguish a broad gradient of anthropogenic distur-
bance, and we look forward to continued index
application, validation, and refinement in the
future.
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